Absence of CC chemokine receptor 8 enhances innate immunity during septic peritonitis
dc.contributor.author | Matsukawa, Akihiro | |
dc.contributor.author | Kudoh, Shinji | |
dc.contributor.author | Sano, Gen‐ichiro | |
dc.contributor.author | Maeda, Takako | |
dc.contributor.author | Ito, Takaaki | |
dc.contributor.author | Lukacs, Nicholas W. | |
dc.contributor.author | Hogaboam, Cory M. | |
dc.contributor.author | Kunkel, Steven L. | |
dc.contributor.author | Lira, Sergio A. | |
dc.date.accessioned | 2020-03-17T18:32:57Z | |
dc.date.available | 2020-03-17T18:32:57Z | |
dc.date.issued | 2006-02 | |
dc.identifier.citation | Matsukawa, Akihiro; Kudoh, Shinji; Sano, Gen‐ichiro ; Maeda, Takako; Ito, Takaaki; Lukacs, Nicholas W.; Hogaboam, Cory M.; Kunkel, Steven L.; Lira, Sergio A. (2006). "Absence of CC chemokine receptor 8 enhances innate immunity during septic peritonitis." The FASEB Journal 20(2): 302-304. | |
dc.identifier.issn | 0892-6638 | |
dc.identifier.issn | 1530-6860 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/154456 | |
dc.description.abstract | An effective clearance of microbes is crucial in host defense during infection. In the present study, we demonstrate that CC chemokine receptor 8 (CCR8) skews innate immune response during septic peritonitis induced by cecal ligation and puncture (CLP). CCR8 was expressed in resident peritoneal macrophages and elicited leukocytes during CLP in the wildâ type CCR8+/+ mice. CCR8â /â mice were resistant to CLPâ induced lethality relative to CCR8+/+ mice, and this resistance was associated with an augmented bacterial clearance in CCR8â /â mice. In vitro, peritoneal macrophages from CCR8â /â mice, but not neutrophils, exhibited enhanced bactericidal activities relative to those from CCR8+/+ mice. Upon stimulation with the bacterial component LPS, elevated levels of superoxide generation, lysosomal enzyme release, and nitric oxide generation, effector molecules for bacterial killing were detected in CCR8â /â macrophages relative to CCR8+/+ macrophages. In addition, CCR8â /â macrophages produced significantly higher levels than CCR8+/+ macrophages of several cytokines and chemokines known to augment bactericidal activities of leukocytes that include TNFâ α, ILâ 12, macrophageâ derived chemokine (MDC/CCL22), macrophage inflammatory protein (MIP)â 2, and KC. Altogether, these results indicate that CCR8 may have a negative impact on host defense during septic peritonitis, providing a new paradigm for the role of CCR8 in innate immunity. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Federation of American Societies for Experimental Biology | |
dc.subject.other | sepsis | |
dc.subject.other | inflammation | |
dc.subject.other | cytokines | |
dc.subject.other | macrophages | |
dc.title | Absence of CC chemokine receptor 8 enhances innate immunity during septic peritonitis | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154456/1/fsb2fj041728fje.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154456/2/fsb2fj041728fje-sup-0001.pdf | |
dc.identifier.doi | 10.1096/fj.04-1728fje | |
dc.identifier.source | The FASEB Journal | |
dc.identifier.citedreference | Dairaghi, D. J., Fan, R. A., McMaster, B. E., Hanley, M. R., and Schall, T. J. ( 1999 ) HHV8encoded vMIPâ I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J. Biol. Chem. 274, 21569 â 21574 | |
dc.identifier.citedreference | Matsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Strieter, R. M., and Kunkel, S. L. ( 1999 ) Endogenous monocyte chemoattractant proteinâ 1 (MCPâ 1) protects mice in a model of acute septic peritonitis: crossâ talk between MCPâ 1 and leukotriene B4. J. Immunol. 163, 6148 â 6154 | |
dc.identifier.citedreference | Matsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Evanoff, H. L., and Kunkel, S. L. ( 2000 ) Pivotal Role of the CC Chemokine, Macrophageâ Derived Chemokine, in the Innate Immune Response. J. Immunol. 164, 5362 â 5368 | |
dc.identifier.citedreference | Fink, M. P., and Heard, S. O. ( 1990 ) Laboratory models of sepsis and septic shock. J. Surg. Res. 49, 186 â 196 | |
dc.identifier.citedreference | Leijh, P. C., van den Barselaar, M. T., and van Furth, R. ( 1977 ) Kinetics of phagocytosis and intracellular killing of Candida albicans by human granulocytes and monocytes. Infect. Immun. 17, 313 â 318 | |
dc.identifier.citedreference | Gallin, J. I., Fletcher, M. P., Seligmann, B. E., Hoffstein, S., Cehrs, K., and Mounessa, N. ( 1982 ) Human neutrophilâ specific granule deficiency: a model to assess the role of neutrophilâ specific granules in the evolution of the inflammatory response. Blood 59, 1317 â 1329 | |
dc.identifier.citedreference | Markert, M., Andrews, P. C., and Babior, B. M. ( 1984 ) Measurement of O2â production by human neutrophils. The preparation and assay of NADPH oxidaseâ containing particles from human neutrophils. Methods Enzymol. 105, 358 â 365 | |
dc.identifier.citedreference | Matsukawa, A., Kaplan, M. H., Hogaboam, C. M., Lukacs, N. W., and Kunkel, S. L. ( 2001 ) Pivotal role of signal transducer and activator of transcription (Stat)4 and Stat6 in the innate immune response during sepsis. J. Exp. Med. 193, 679 â 688 | |
dc.identifier.citedreference | Matsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Evanoff, H. L., Strieter, R. M., and Kunkel, S. L. ( 2000 ) Expression and contribution of endogenous ILâ 13 in an experimental model of sepsis. J. Immunol. 164, 2738 â 2744 | |
dc.identifier.citedreference | Babior, B. M., Hoyal, C. R., Lehrer, R. I., and Ganz, T. ( 2001 ) Antimicrobial activity of leukocytes. In Physiology of inflammation ( Ley, K., ed) pp. 189 â 203, Oxford University Press, New York | |
dc.identifier.citedreference | Buettner, M., Meinken, C., Bastian, M., Bhat, R., Stossel, E., Faller, G., Cianciolo, G., Ficker, J., Wagner, M., Rollinghoff, M., et al. ( 2005 ) Inverse correlation of maturity and antibacterial activity in human dendritic cells. J. Immunol. 174, 4203 â 4209 | |
dc.identifier.citedreference | Astiz, M. E., and Rackow, E. C. ( 1998 ) Septic shock. Lancet 351, 1501 â 1505 | |
dc.identifier.citedreference | Bernardini, G., Hedrick, J., Sozzani, S., Luini, W., Spinetti, G., Weiss, M., Menon, S., Zlotnik, A., Mantovani, A., Santoni, A., et al. ( 1998 ) Identification of the CC chemokines TARC and macrophage inflammatory proteinâ 1 beta as novel functional ligands for the CCR8 receptor. Eur. J. Immunol. 28, 582 â 588 | |
dc.identifier.citedreference | Garlisi, C. G., Xiao, H., Tian, F., Hedrick, J. A., Billah, M. M., Egan, R. W., and Umland, S. P. ( 1999 ) The assignment of chemokineâ chemokine receptor pairs: TARC and MIPâ 1 beta are not ligands for human CCâ chemokine receptor 8. Eur. J. Immunol. 29, 3210 â 3215 | |
dc.identifier.citedreference | Pleskoff, O., Casarosa, P., Verneuil, L., Ainoun, F., Beisser, P., Smit, M., Leurs, R., Schneider, P., Michelson, S., and Ameisen, J. C. ( 2005 ) The human cytomegalovirusencoded chemokine receptor US28 induces caspaseâ dependent apoptosis. Febs. J. 272, 4163 â 4177 | |
dc.identifier.citedreference | Casarosa, P., Gruijthuijsen, Y. K., Michel, D., Beisser, P. S., Holl, J., Fitzsimons, C. P., Verzijl, D., Bruggeman, C. A., Mertens, T., Leurs, R., et al. ( 2003 ) Constitutive signaling of the human cytomegalovirusâ encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J. Biol. Chem. 278, 50010 â 50023 | |
dc.identifier.citedreference | Luttichau, H. R., Stine, J., Boesen, T. P., Johnsen, A. H., Chantry, D., Gerstoft, J., and Schwartz, T. W. ( 2000 ) A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J. Exp. Med. 191, 171 â 180 | |
dc.identifier.citedreference | Trebst, C., Staugaitis, S. M., Kivisakk, P., Mahad, D., Cathcart, M. K., Tucky, B., Wei, T., Rani, M. R., Horuk, R., Aldape, K. D., et al. ( 2003 ) CC chemokine receptor 8 in the central nervous system is associated with phagocytic macrophages. Am. J. Pathol. 162, 427 â 438 | |
dc.identifier.citedreference | Qu, C., Edwards, E. W., Tacke, F., Angeli, V., Llodra, J., Sanchezâ Schmitz, G., Garin, A., Haque, N. S., Peters, W., van Rooijen, N., et al. ( 2004 ) Role of CCR8 and other chemokine pathways in the migration of monocyteâ derived dendritic cells to lymph nodes. J. Exp. Med. 200, 1231 â 1241 | |
dc.identifier.citedreference | Xu, H., Kramer, M., Spengler, H. P., and Peters, J. H. ( 1995 ) Dendritic cells differentiated from human monocytes through a combination of ILâ 4, GMâ CSF and IFNâ gamma exhibit phenotype and function of blood dendritic cells. Adv. Exp. Med. Biol. 378, 75 â 78 | |
dc.identifier.citedreference | Hack, C. E., Aarden, L. A., and Thijs, L. G. ( 1997 ) Role of cytokines in sepsis. Adv. Immunol. 66, 101 â 195 | |
dc.identifier.citedreference | Steinhauser, M. L., Hogaboam, C. M., Matsukawa, A., Lukacs, N. W., Strieter, R. M., and Kunkel, S. L. ( 2000 ) Chemokine C10 promotes disease resolution and survival in an experimental model of bacterial sepsis. Infect. Immun. 68, 6108 â 6114 | |
dc.identifier.citedreference | Matsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Strieter, R. M., and Kunkel, S. L. ( 2000 ) Endogenous MCPâ 1 influences systemic cytokine balance in a murine model of acute septic peritonitis. Exp. Mol. Pathol. 68, 77 â 84 | |
dc.identifier.citedreference | Walley, K. R., Lukacs, N. W., Standiford, T. J., Strieter, R. M., and Kunkel, S. L. ( 1997 ) Elevated levels of macrophage inflammatory protein 2 in severe murine peritonitis increase neutrophil recruitment and mortality. Infect. Immun. 65, 3847 â 3851 | |
dc.identifier.citedreference | Ness, T. L., Hogaboam, C. M., Strieter, R. M., and Kunkel, S. L. ( 2003 ) Immunomodulatory role of CXCR2 during experimental septic peritonitis. J. Immunol. 171, 3775 â 3784 | |
dc.identifier.citedreference | Steinhauser, M. L., Hogaboam, C. M., Lukacs, N. W., Strieter, R. M., and Kunkel, S. L. ( 1999 ) Multiple roles for ILâ 12 in a model of acute septic peritonitis. J. Immunol. 162, 5437 â 5443 | |
dc.identifier.citedreference | Steinhauser, M. L., Hogaboam, C. M., Kunkel, S. L., Lukacs, N. W., Strieter, R. M., and Standiford, T. J. ( 1999 ) ILâ 10 is a major mediator of sepsisâ induced impairment in lung antibacterial host defense. J. Immunol. 162, 392 â 399 | |
dc.identifier.citedreference | Matsukawa, A., Takeda, K., Kudo, S., Maeda, T., Kagayama, M., and Akira, S. ( 2003 ) Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J. Immunol. 171, 6198 â 6205 | |
dc.identifier.citedreference | Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A. ( 1999 ) Phylogenetic perspectives in innate immunity. Science 284, 1313 â 1318 | |
dc.identifier.citedreference | Baggiolini, M. ( 2001 ) Chemokines in pathology and medicine. J. Intern. Med. 250, 91 â 104 | |
dc.identifier.citedreference | Zlotnik, A., and Yoshie, O. ( 2000 ) Chemokines: a new classification system and their role in immunity. Immunity 12, 121 â 127 | |
dc.identifier.citedreference | Sallusto, F., Mackay, C. R., and Lanzavecchia, A. ( 2000 ) The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593 â 620 | |
dc.identifier.citedreference | Paninaâ Bordignon, P., Papi, A., Mariani, M., Di Lucia, P., Casoni, G., Bellettato, C., Buonsanti, C., Miotto, D., Mapp, C., Villa, A., et al. ( 2001 ) The Câ C chemokine receptors CCR4 and CCR8 identify airway T cells of allergenâ challenged atopic asthmatics. J. Clin. Invest. 107, 1357 â 1364 | |
dc.identifier.citedreference | Chensue, S. W., Lukacs, N. W., Yang, T. Y., Shang, X., Frait, K. A., Kunkel, S. L., Kung, T., Wiekowski, M. T., Hedrick, J. A., Cook, D. N., et al. ( 2001 ) Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J. Exp. Med. 193, 573 â 584 | |
dc.identifier.citedreference | Chung, C. D., Kuo, F., Kumer, J., Motani, A. S., Lawrence, C. E., Henderson, W. R., Jr., and Venkataraman, C. ( 2003 ) CCR8 is not essential for the development of inflammation in a mouse model. J. Immunol. 170, 581 â 587 | |
dc.identifier.citedreference | Goya, I., Villares, R., Zaballos, A., Gutierrez, J., Kremer, L., Gonzalo, J.â A., Varona, R., Carramolino, L., Serrano, A., Pallares, P., Criado, L. M., Kolbeck, R., Torres, M., Coyle, A. J., Gutierrezâ Ramos, J.â C., Martinezâ A, C., and Marquez, G. ( 2003 ) Absence of CCR8 Does Not Impair the Response to Ovalbuminâ Induced Allergic Airway Disease. J Immunol 170, 2138 â 2146 | |
dc.identifier.citedreference | Tiffany, H. L., Lautens, L. L., Gao, J. L., Pease, J., Locati, M., Combadiere, C., Modi, W., Bonner, T. I., and Murphy, P. M. ( 1997 ) Identification of CCR8: a human monocyte and thymus receptor for the CC chemokine Iâ 309. J. Exp. Med. 186, 165 â 170 | |
dc.identifier.citedreference | Devi, S., Laning, J., Luo, Y., and Dorf, M. E. ( 1995 ) Biologic activities of the betachemokine TCA3 on neutrophils and macrophages. J. Immunol. 154, 5376 â 5383 | |
dc.identifier.citedreference | Luo, Y., Laning, J., Devi, S., Mak, J., Schall, T. J., and Dorf, M. E. ( 1994 ) Biologic activities of the murine betaâ chemokine TCA3. J. Immunol. 153, 4616 â 4624 | |
dc.identifier.citedreference | Aderem, A., and Underhill, D. M. ( 1999 ) Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593 â 623 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.