Show simple item record

Absence of CC chemokine receptor 8 enhances innate immunity during septic peritonitis

dc.contributor.authorMatsukawa, Akihiro
dc.contributor.authorKudoh, Shinji
dc.contributor.authorSano, Gen‐ichiro
dc.contributor.authorMaeda, Takako
dc.contributor.authorIto, Takaaki
dc.contributor.authorLukacs, Nicholas W.
dc.contributor.authorHogaboam, Cory M.
dc.contributor.authorKunkel, Steven L.
dc.contributor.authorLira, Sergio A.
dc.date.accessioned2020-03-17T18:32:57Z
dc.date.available2020-03-17T18:32:57Z
dc.date.issued2006-02
dc.identifier.citationMatsukawa, Akihiro; Kudoh, Shinji; Sano, Gen‐ichiro ; Maeda, Takako; Ito, Takaaki; Lukacs, Nicholas W.; Hogaboam, Cory M.; Kunkel, Steven L.; Lira, Sergio A. (2006). "Absence of CC chemokine receptor 8 enhances innate immunity during septic peritonitis." The FASEB Journal 20(2): 302-304.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154456
dc.description.abstractAn effective clearance of microbes is crucial in host defense during infection. In the present study, we demonstrate that CC chemokine receptor 8 (CCR8) skews innate immune response during septic peritonitis induced by cecal ligation and puncture (CLP). CCR8 was expressed in resident peritoneal macrophages and elicited leukocytes during CLP in the wildâ type CCR8+/+ mice. CCR8â /â mice were resistant to CLPâ induced lethality relative to CCR8+/+ mice, and this resistance was associated with an augmented bacterial clearance in CCR8â /â mice. In vitro, peritoneal macrophages from CCR8â /â mice, but not neutrophils, exhibited enhanced bactericidal activities relative to those from CCR8+/+ mice. Upon stimulation with the bacterial component LPS, elevated levels of superoxide generation, lysosomal enzyme release, and nitric oxide generation, effector molecules for bacterial killing were detected in CCR8â /â macrophages relative to CCR8+/+ macrophages. In addition, CCR8â /â macrophages produced significantly higher levels than CCR8+/+ macrophages of several cytokines and chemokines known to augment bactericidal activities of leukocytes that include TNFâ α, ILâ 12, macrophageâ derived chemokine (MDC/CCL22), macrophage inflammatory protein (MIP)â 2, and KC. Altogether, these results indicate that CCR8 may have a negative impact on host defense during septic peritonitis, providing a new paradigm for the role of CCR8 in innate immunity.
dc.publisherWiley Periodicals, Inc.
dc.publisherFederation of American Societies for Experimental Biology
dc.subject.othersepsis
dc.subject.otherinflammation
dc.subject.othercytokines
dc.subject.othermacrophages
dc.titleAbsence of CC chemokine receptor 8 enhances innate immunity during septic peritonitis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154456/1/fsb2fj041728fje.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154456/2/fsb2fj041728fje-sup-0001.pdf
dc.identifier.doi10.1096/fj.04-1728fje
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceDairaghi, D. J., Fan, R. A., McMaster, B. E., Hanley, M. R., and Schall, T. J. ( 1999 ) HHV8encoded vMIPâ I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J. Biol. Chem. 274, 21569 â 21574
dc.identifier.citedreferenceMatsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Strieter, R. M., and Kunkel, S. L. ( 1999 ) Endogenous monocyte chemoattractant proteinâ 1 (MCPâ 1) protects mice in a model of acute septic peritonitis: crossâ talk between MCPâ 1 and leukotriene B4. J. Immunol. 163, 6148 â 6154
dc.identifier.citedreferenceMatsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Evanoff, H. L., and Kunkel, S. L. ( 2000 ) Pivotal Role of the CC Chemokine, Macrophageâ Derived Chemokine, in the Innate Immune Response. J. Immunol. 164, 5362 â 5368
dc.identifier.citedreferenceFink, M. P., and Heard, S. O. ( 1990 ) Laboratory models of sepsis and septic shock. J. Surg. Res. 49, 186 â 196
dc.identifier.citedreferenceLeijh, P. C., van den Barselaar, M. T., and van Furth, R. ( 1977 ) Kinetics of phagocytosis and intracellular killing of Candida albicans by human granulocytes and monocytes. Infect. Immun. 17, 313 â 318
dc.identifier.citedreferenceGallin, J. I., Fletcher, M. P., Seligmann, B. E., Hoffstein, S., Cehrs, K., and Mounessa, N. ( 1982 ) Human neutrophilâ specific granule deficiency: a model to assess the role of neutrophilâ specific granules in the evolution of the inflammatory response. Blood 59, 1317 â 1329
dc.identifier.citedreferenceMarkert, M., Andrews, P. C., and Babior, B. M. ( 1984 ) Measurement of O2â production by human neutrophils. The preparation and assay of NADPH oxidaseâ containing particles from human neutrophils. Methods Enzymol. 105, 358 â 365
dc.identifier.citedreferenceMatsukawa, A., Kaplan, M. H., Hogaboam, C. M., Lukacs, N. W., and Kunkel, S. L. ( 2001 ) Pivotal role of signal transducer and activator of transcription (Stat)4 and Stat6 in the innate immune response during sepsis. J. Exp. Med. 193, 679 â 688
dc.identifier.citedreferenceMatsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Evanoff, H. L., Strieter, R. M., and Kunkel, S. L. ( 2000 ) Expression and contribution of endogenous ILâ 13 in an experimental model of sepsis. J. Immunol. 164, 2738 â 2744
dc.identifier.citedreferenceBabior, B. M., Hoyal, C. R., Lehrer, R. I., and Ganz, T. ( 2001 ) Antimicrobial activity of leukocytes. In Physiology of inflammation ( Ley, K., ed) pp. 189 â 203, Oxford University Press, New York
dc.identifier.citedreferenceBuettner, M., Meinken, C., Bastian, M., Bhat, R., Stossel, E., Faller, G., Cianciolo, G., Ficker, J., Wagner, M., Rollinghoff, M., et al. ( 2005 ) Inverse correlation of maturity and antibacterial activity in human dendritic cells. J. Immunol. 174, 4203 â 4209
dc.identifier.citedreferenceAstiz, M. E., and Rackow, E. C. ( 1998 ) Septic shock. Lancet 351, 1501 â 1505
dc.identifier.citedreferenceBernardini, G., Hedrick, J., Sozzani, S., Luini, W., Spinetti, G., Weiss, M., Menon, S., Zlotnik, A., Mantovani, A., Santoni, A., et al. ( 1998 ) Identification of the CC chemokines TARC and macrophage inflammatory proteinâ 1 beta as novel functional ligands for the CCR8 receptor. Eur. J. Immunol. 28, 582 â 588
dc.identifier.citedreferenceGarlisi, C. G., Xiao, H., Tian, F., Hedrick, J. A., Billah, M. M., Egan, R. W., and Umland, S. P. ( 1999 ) The assignment of chemokineâ chemokine receptor pairs: TARC and MIPâ 1 beta are not ligands for human CCâ chemokine receptor 8. Eur. J. Immunol. 29, 3210 â 3215
dc.identifier.citedreferencePleskoff, O., Casarosa, P., Verneuil, L., Ainoun, F., Beisser, P., Smit, M., Leurs, R., Schneider, P., Michelson, S., and Ameisen, J. C. ( 2005 ) The human cytomegalovirusencoded chemokine receptor US28 induces caspaseâ dependent apoptosis. Febs. J. 272, 4163 â 4177
dc.identifier.citedreferenceCasarosa, P., Gruijthuijsen, Y. K., Michel, D., Beisser, P. S., Holl, J., Fitzsimons, C. P., Verzijl, D., Bruggeman, C. A., Mertens, T., Leurs, R., et al. ( 2003 ) Constitutive signaling of the human cytomegalovirusâ encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J. Biol. Chem. 278, 50010 â 50023
dc.identifier.citedreferenceLuttichau, H. R., Stine, J., Boesen, T. P., Johnsen, A. H., Chantry, D., Gerstoft, J., and Schwartz, T. W. ( 2000 ) A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J. Exp. Med. 191, 171 â 180
dc.identifier.citedreferenceTrebst, C., Staugaitis, S. M., Kivisakk, P., Mahad, D., Cathcart, M. K., Tucky, B., Wei, T., Rani, M. R., Horuk, R., Aldape, K. D., et al. ( 2003 ) CC chemokine receptor 8 in the central nervous system is associated with phagocytic macrophages. Am. J. Pathol. 162, 427 â 438
dc.identifier.citedreferenceQu, C., Edwards, E. W., Tacke, F., Angeli, V., Llodra, J., Sanchezâ Schmitz, G., Garin, A., Haque, N. S., Peters, W., van Rooijen, N., et al. ( 2004 ) Role of CCR8 and other chemokine pathways in the migration of monocyteâ derived dendritic cells to lymph nodes. J. Exp. Med. 200, 1231 â 1241
dc.identifier.citedreferenceXu, H., Kramer, M., Spengler, H. P., and Peters, J. H. ( 1995 ) Dendritic cells differentiated from human monocytes through a combination of ILâ 4, GMâ CSF and IFNâ gamma exhibit phenotype and function of blood dendritic cells. Adv. Exp. Med. Biol. 378, 75 â 78
dc.identifier.citedreferenceHack, C. E., Aarden, L. A., and Thijs, L. G. ( 1997 ) Role of cytokines in sepsis. Adv. Immunol. 66, 101 â 195
dc.identifier.citedreferenceSteinhauser, M. L., Hogaboam, C. M., Matsukawa, A., Lukacs, N. W., Strieter, R. M., and Kunkel, S. L. ( 2000 ) Chemokine C10 promotes disease resolution and survival in an experimental model of bacterial sepsis. Infect. Immun. 68, 6108 â 6114
dc.identifier.citedreferenceMatsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Strieter, R. M., and Kunkel, S. L. ( 2000 ) Endogenous MCPâ 1 influences systemic cytokine balance in a murine model of acute septic peritonitis. Exp. Mol. Pathol. 68, 77 â 84
dc.identifier.citedreferenceWalley, K. R., Lukacs, N. W., Standiford, T. J., Strieter, R. M., and Kunkel, S. L. ( 1997 ) Elevated levels of macrophage inflammatory protein 2 in severe murine peritonitis increase neutrophil recruitment and mortality. Infect. Immun. 65, 3847 â 3851
dc.identifier.citedreferenceNess, T. L., Hogaboam, C. M., Strieter, R. M., and Kunkel, S. L. ( 2003 ) Immunomodulatory role of CXCR2 during experimental septic peritonitis. J. Immunol. 171, 3775 â 3784
dc.identifier.citedreferenceSteinhauser, M. L., Hogaboam, C. M., Lukacs, N. W., Strieter, R. M., and Kunkel, S. L. ( 1999 ) Multiple roles for ILâ 12 in a model of acute septic peritonitis. J. Immunol. 162, 5437 â 5443
dc.identifier.citedreferenceSteinhauser, M. L., Hogaboam, C. M., Kunkel, S. L., Lukacs, N. W., Strieter, R. M., and Standiford, T. J. ( 1999 ) ILâ 10 is a major mediator of sepsisâ induced impairment in lung antibacterial host defense. J. Immunol. 162, 392 â 399
dc.identifier.citedreferenceMatsukawa, A., Takeda, K., Kudo, S., Maeda, T., Kagayama, M., and Akira, S. ( 2003 ) Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J. Immunol. 171, 6198 â 6205
dc.identifier.citedreferenceHoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A. ( 1999 ) Phylogenetic perspectives in innate immunity. Science 284, 1313 â 1318
dc.identifier.citedreferenceBaggiolini, M. ( 2001 ) Chemokines in pathology and medicine. J. Intern. Med. 250, 91 â 104
dc.identifier.citedreferenceZlotnik, A., and Yoshie, O. ( 2000 ) Chemokines: a new classification system and their role in immunity. Immunity 12, 121 â 127
dc.identifier.citedreferenceSallusto, F., Mackay, C. R., and Lanzavecchia, A. ( 2000 ) The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593 â 620
dc.identifier.citedreferencePaninaâ Bordignon, P., Papi, A., Mariani, M., Di Lucia, P., Casoni, G., Bellettato, C., Buonsanti, C., Miotto, D., Mapp, C., Villa, A., et al. ( 2001 ) The Câ C chemokine receptors CCR4 and CCR8 identify airway T cells of allergenâ challenged atopic asthmatics. J. Clin. Invest. 107, 1357 â 1364
dc.identifier.citedreferenceChensue, S. W., Lukacs, N. W., Yang, T. Y., Shang, X., Frait, K. A., Kunkel, S. L., Kung, T., Wiekowski, M. T., Hedrick, J. A., Cook, D. N., et al. ( 2001 ) Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J. Exp. Med. 193, 573 â 584
dc.identifier.citedreferenceChung, C. D., Kuo, F., Kumer, J., Motani, A. S., Lawrence, C. E., Henderson, W. R., Jr., and Venkataraman, C. ( 2003 ) CCR8 is not essential for the development of inflammation in a mouse model. J. Immunol. 170, 581 â 587
dc.identifier.citedreferenceGoya, I., Villares, R., Zaballos, A., Gutierrez, J., Kremer, L., Gonzalo, J.â A., Varona, R., Carramolino, L., Serrano, A., Pallares, P., Criado, L. M., Kolbeck, R., Torres, M., Coyle, A. J., Gutierrezâ Ramos, J.â C., Martinezâ A, C., and Marquez, G. ( 2003 ) Absence of CCR8 Does Not Impair the Response to Ovalbuminâ Induced Allergic Airway Disease. J Immunol 170, 2138 â 2146
dc.identifier.citedreferenceTiffany, H. L., Lautens, L. L., Gao, J. L., Pease, J., Locati, M., Combadiere, C., Modi, W., Bonner, T. I., and Murphy, P. M. ( 1997 ) Identification of CCR8: a human monocyte and thymus receptor for the CC chemokine Iâ 309. J. Exp. Med. 186, 165 â 170
dc.identifier.citedreferenceDevi, S., Laning, J., Luo, Y., and Dorf, M. E. ( 1995 ) Biologic activities of the betachemokine TCA3 on neutrophils and macrophages. J. Immunol. 154, 5376 â 5383
dc.identifier.citedreferenceLuo, Y., Laning, J., Devi, S., Mak, J., Schall, T. J., and Dorf, M. E. ( 1994 ) Biologic activities of the murine betaâ chemokine TCA3. J. Immunol. 153, 4616 â 4624
dc.identifier.citedreferenceAderem, A., and Underhill, D. M. ( 1999 ) Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593 â 623
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.