Gene duplication and functional divergence of the zebrafish insulin‐like growth factor 1 receptors
dc.contributor.author | Schlueter, Peter J. | |
dc.contributor.author | Royer, Tricia | |
dc.contributor.author | Farah, Mohamed H. | |
dc.contributor.author | Laser, Benjamin | |
dc.contributor.author | Chan, Shu Jin | |
dc.contributor.author | Steiner, Donald F. | |
dc.contributor.author | Duan, Cunming | |
dc.contributor.author | Schlueter, Peter J. | |
dc.contributor.author | Royer, Tricia | |
dc.contributor.author | Farah, Mohamed H. | |
dc.contributor.author | Laser, Benjamin | |
dc.contributor.author | Chan, Shu Jin | |
dc.contributor.author | Steiner, Donald F. | |
dc.contributor.author | Duan, Cunming | |
dc.date.accessioned | 2020-03-17T18:33:02Z | |
dc.date.available | 2020-03-17T18:33:02Z | |
dc.date.issued | 2006-06 | |
dc.identifier.citation | Schlueter, Peter J.; Royer, Tricia; Farah, Mohamed H.; Laser, Benjamin; Chan, Shu Jin; Steiner, Donald F.; Duan, Cunming; Schlueter, Peter J.; Royer, Tricia; Farah, Mohamed H.; Laser, Benjamin; Chan, Shu Jin; Steiner, Donald F.; Duan, Cunming (2006). "Gene duplication and functional divergence of the zebrafish insulin‐like growth factor 1 receptors." The FASEB Journal 20(8): 1230-1232. | |
dc.identifier.issn | 0892-6638 | |
dc.identifier.issn | 1530-6860 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/154460 | |
dc.description.abstract | Insulin‐like growth factor (IGF) 1 receptor (IGF1R)‐mediated signaling plays key roles in growth, development, and physiology. Recent studies have shown that there are two distinct igf1r genes in zebrafish, termed igf1ra and igf1rb. In this study, we tested the hypothesis that zebrafish igf1ra and igf1rb resulted from a gene duplication event at the igf1r locus and that this has led to their functional divergence. The genomic structures of zebrafish igf1ra and igf1rb were determined and their loci mapped. While zebrafish igf1ra has 21 exons and is located on linkage group (LG) 18, zebrafish igf1rb has 22 exons and mapped to LG 7. There is a strong syntenic relationship between the two zebrafish genes and the human IGF1R gene. Using a MO‐based loss‐of‐function approach, we show that both Igf1ra and Igf1rb are required for zebrafish embryo viability and proper growth and development. Although Igf1ra and Igf1rb demonstrated a large degree of functional overlap with regard to cell differentiation in the developing eye, inner ear, heart, and muscle, they also exhibited functional distinction involving a greater requirement for Igf1rb in spontaneous muscle contractility. These findings suggest that the duplicated zebrafish igf1r genes play largely overlapping but not identical functional roles in early development and provide novel insight into the functional evolution of the IGF1R/insulin receptor gene family.— Schlueter, P. J., Royer, T., Mohamed, H. F., Laser, B., Chan, S. J., Steiner, D. F., Duan, C. Gene duplication and functional divergence of the zebrafish insulin‐like growth factor 1 receptors. FASEB J. 20, E462–E471 (2006) | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Federation of American Societies for Experimental Biology | |
dc.subject.other | heart | |
dc.subject.other | muscle | |
dc.subject.other | IGF signaling | |
dc.subject.other | growth | |
dc.subject.other | developmental timing | |
dc.subject.other | retina | |
dc.subject.other | inner ear | |
dc.title | Gene duplication and functional divergence of the zebrafish insulin‐like growth factor 1 receptors | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/154460/1/fsb2fj053882fje.pdf | |
dc.identifier.doi | 10.1096/fj.05-3882fje | |
dc.identifier.source | The FASEB Journal | |
dc.identifier.citedreference | Neumann, C. J., and Nuesslein-Volhard, C. ( 2000 ) Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289, 2137 – 2139 | |
dc.identifier.citedreference | Efstratiadis, A. ( 1998 ) Genetics of mouse growth. Int. J. Dev. Biol. 42, 955 – 976 | |
dc.identifier.citedreference | Kim, J. J., and Accili, D. ( 2002 ) Signalling through IGF-I and insulin receptors: where is the specificity? Growth Horm. IGF Res. 12, 84 – 90 | |
dc.identifier.citedreference | Pera, E. M., Ikeda, A., Eivers, E., and De Robertis, E. M. ( 2003 ) Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev. 17, 3023 – 3028 | |
dc.identifier.citedreference | Pera, E. M., Wessely, O., Li, S. Y., and De Robertis, E. M. ( 2001 ) Neural and head induction by insulin-like growth factor signals. Dev. Cell 1, 655 – 665 | |
dc.identifier.citedreference | Richard-Parpaillon, L., Heligon, C., Chesnel, F., Boujard, D., and Philpott, A. ( 2002 ) The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev. Biol. 244, 407 – 417 | |
dc.identifier.citedreference | Eivers, E., McCarthy, K., Glynn, C., Nolan, C. M., and Byrnes, L. ( 2004 ) Insulin-like growth factor (IGF) signalling is required for early dorso-anterior development of the zebrafish embryo. Int. J. Dev. Biol. 48, 1131 – 1140 | |
dc.identifier.citedreference | Maures, T., Chan, S. J., Xu, B., Sun, H., Ding, J., and Duan, C. ( 2002 ) Structural, biochemical, and expression analysis of two distinct insulin-like growth factor I receptors and their lig ands in zebrafish. Endocrinology 143, 1858 – 1871 | |
dc.identifier.citedreference | Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. ( 1995 ) Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253 – 310 | |
dc.identifier.citedreference | Hukriede, N. A., Joly, L., Tsang, M., Miles, J., Tellis, P., Epstein, J. A., Barbazuk, W. B., Li, F. N., Paw, B., Postlethwait, J. H., Hudson, T. J., Zon, L. I., McPherson, J. D., Chevrette, M., Dawid, I. B., Johnson, S. L., and Ekker, M. ( 1999 ) Radiation hybrid mapping of the zebrafish genome. Proc. Natl. Acad. Sci. U. S. A. 96, 9745 – 9750 | |
dc.identifier.citedreference | Wood, A. W., Schlueter, P. J., and Duan, C. ( 2005 ) Targeted knockdown of insulin-like growth factor binding protein-2 disrupts cardiovascular development in zebrafish embryos. Mol. Endocrinol. 19, 1024 – 1034 | |
dc.identifier.citedreference | Duan, C., Ding, J., Li, Q., Tsai, W., and Pozios, K. ( 1999 ) Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 96, 15274 – 15279 | |
dc.identifier.citedreference | Hu, M., and Easter, S. S. ( 1999 ) Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev. Biol. 207, 309 – 321 | |
dc.identifier.citedreference | Ayaso, E., Nolan, C. M., and Byrnes, L. ( 2002 ) Zebrafish insulin-like growth factor-I receptor: molecular cloning and developmental expression. Mol. Cell. Endocrinol. 191, 137 – 148 | |
dc.identifier.citedreference | Gates, M. A., Kim, L., Egan, E. S., Cardozo, T., Sirotkin, H. I., Dougan, S. T., Lashkari, D., Abagyan, R., Schier, A. F., and Talbot, W. S. ( 1999 ) A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res. 9, 334 – 347 | |
dc.identifier.citedreference | Geisler, R., Rauch, G. J., Baier, H., van Bebber, F., Bross, L., Dekens, M. P., Finger, K., Fricke, C., Gates, M. A., Geiger, H., Geiger-Rudolph, S., et al. ( 1999 ) A radiation hybrid map of the zebrafish genome. Nat. Genet. 23, 86 – 89 | |
dc.identifier.citedreference | Woods, I. G., Kelly, P. D., Chu, F., Ngo-Hazelett, P., Yan, Y. L., Huang, H., Postlethwait, J. H., and Talbot, W. S. ( 2000 ) A comparative map of the zebrafish genome. Genome Res. 10, 1903 – 1914 | |
dc.identifier.citedreference | Barbazuk, W. B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., Bedell, J. A., McPherson, J. D., and Johnson, S. L. ( 2000 ) The syntenic relationship of the zebrafish and human genomes. Genome Res. 10, 1351 – 1358 | |
dc.identifier.citedreference | Pozios, K.C., Ding, J., Degger, B., Upton, Z., and Duan, C. ( 2001 ) IGFs stimulate zebrafish cell proliferation through activating the MAP kinase and PI3-kinase signaling pathways. Am. J. Physiol. 280, R1230 – R1239 | |
dc.identifier.citedreference | Ekker, S. C. ( 2000 ) Morphants: a new systematic vertebrate functional genomics approach. Yeast 17, 302 – 306 | |
dc.identifier.citedreference | Ekker, S. C., and Larson, J. D. ( 2001 ) Morphant technology in model developmental systems. Genesis 30, 89 – 93 | |
dc.identifier.citedreference | Easter, S. S., Jr., and Malicki, J. J. ( 2002 ) The zebrafish eye: developmental and genetic analysis. Results Probl. Cell Differ. 40, 346 – 370 | |
dc.identifier.citedreference | Neumann, C. J. ( 2001 ) Pattern formation in the zebrafish retina. Semin. Cell Dev. Biol. 12, 485 – 490 | |
dc.identifier.citedreference | Whitfield, T. T., Riley, B. B., Chiang, M. Y., and Phillips, B. ( 2002 ) Development of the zebrafish inner ear. Dev. Dyn. 223, 427 – 458 | |
dc.identifier.citedreference | Drapeau, P., Saint-Amant, L., Buss, R. R., Chong, M., McDear-mid, J. R., and Brustein, E. ( 2002 ) Development of the locomotor network in zebrafish. Prog. Neurobiol. 68, 85 – 111 | |
dc.identifier.citedreference | Wood, A. W., Duan, C., and Bern, H. A. ( 2005 ) Insulin-like growth factor signaling in fish. Int. Rev. Cytol. 243, 215 – 285 | |
dc.identifier.citedreference | Chan, S. J., Plisetskaya, E. M., Urbinati, E., Jin, Y., and Steiner, D. F. ( 1997 ) Expression of multiple insulin and insulin-like growth factor receptor genes in salmon gill cartilage. Proc. Natl. Acad. Sci. U. S. A. 94, 12446 – 12451 | |
dc.identifier.citedreference | Amores, A., Force, A., Yan, Y. L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Prince, V., Wang, Y. L., Westerfield, M., Ekker, M., and Postlethwait, J. H. ( 1998 ) Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711 – 1714 | |
dc.identifier.citedreference | Ohno, S. ( 1970 ) Evolution by Gene Duplication. Springer-Verlag, New York | |
dc.identifier.citedreference | Zhang, J. ( 2003 ) Evolution by gene duplication: an update. Trends Ecol. Evol. 16, 292 – 298 | |
dc.identifier.citedreference | Chen, C., Jack, J., and Garofalo, R. S. ( 1996 ) The Drosophila insulin receptor is required for normal growth. Endocrinology 137, 846 – 856 | |
dc.identifier.citedreference | Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., and Postlethwait, J. ( 1999 ) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531 – 1545 | |
dc.identifier.citedreference | He, X., and Zhang, J. ( 2005 ) Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169, 1157 – 1164 | |
dc.identifier.citedreference | Klinghoffer, R. A., Mueting-Nelsen, P. F., Faerman, A., Shani, M., and Soriano, P. ( 2001 ) The two PDGF receptors maintain conserved signaling in vivo despite divergent embryological functions. Mol. Cell. 7, 343 – 354 | |
dc.identifier.citedreference | Heldin, C. H., Ostman, A., and Ronnstrand, L. ( 1998 ) Signal transduction via platelet-derived growth factor receptors. Bio-chim. Biophys. Acta 1378, F79 – 113 | |
dc.identifier.citedreference | Klinghoffer, R. A., Hamilton, T. G., Hoch, R., and Soriano, P. ( 2002 ) An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev. Cell 2, 103 – 113 | |
dc.identifier.citedreference | Le Roith, D., Bondy, C., Yakar, S., Liu, J. L., and Butler, A. ( 2001 ) The somatomedin hypothesis: 2001. Endocr. Rev. 22, 53 – 74 | |
dc.identifier.citedreference | Jones, J. I., and Clemmons, D. R. ( 1995 ) Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 16, 3 – 34 | |
dc.identifier.citedreference | Nakae, J., Kido, Y., and Accili, D. ( 2001 ) Distinct and overlapping functions of insulin and IGF-I receptors. Endocr. Rev. 22, 818 – 835 | |
dc.identifier.citedreference | De Meyts, P., and Whittaker, J. ( 2002 ) Structural biology of insulin and IGF1 receptors: implications for drug design. Nat. Rev. Drug Discov. 1, 769 – 783 | |
dc.identifier.citedreference | Abuzzahab, M. J., Schneider, A., Goddard, A., Grigorescu, F., Lautier, C., Keller, E., Kiess, W., Klammt, J., Kratzsch, J., Osgood, D., Pfaffle, R., Raile, K., Seidel, B., Smith, R. J., and Chernausek, S. D. ( 2003 ) IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N. Engl. J. Med. 349, 2211 – 2222 | |
dc.identifier.citedreference | Kawashima, Y., Kanzaki, S., Yang, F., Kinoshita, T., Hanaki, K., Nagaishi, J., Ohtsuka, Y., Hisatome, I., Ninomoya, H., Nanba, E., Fukushima, T., and Takahashi, S. ( 2005 ) Mutation at cleavage site of insulin-like growth factor receptor in a short-stature child born with intrauterine growth retardation. J. Clin. Endocr. Metab. 90, 4679 – 4687 | |
dc.identifier.citedreference | Woods, K. A., Camacho-Hubner, C., Savage, M. O., and Clark, A. J. ( 1996 ) Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med. 335, 1363 – 1367 | |
dc.identifier.citedreference | Denley, A., Wang, C. C., McNeil, K. A., Walenkamp, M. J., van Duyvenvoorde, H., Wit, J. M., Wallace, J. C., Norton, R. S., Karperien, M., and Forbes, B. E. ( 2005 ) Structural and functional characteristics of the Val44Met insulin-like growth factor I missense mutation: correlation with effects on growth and development. Mol. Endocrinol. 19, 711 – 721 | |
dc.identifier.citedreference | Walenkamp, M. J., Karperien, M., Pereira, A. M., Hilhorst-Hofstee, Y., van Doorn, J., Chen, J. W., Mohan, S., Denley, A., Forbes, B., van Duyvenvoorde, H. A., van Thiel, S. W., Sluimers, C. A., Bax, J. J., de Laat, J. A., Breuning, M. B., Romijn, J. A., and Wit, J. M. ( 2005 ) Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J. Clin. Endocrinol. Metab. 90, 2855 – 2864 | |
dc.identifier.citedreference | Baker, J., Liu, J. P., Robertson, E. J., and Efstratiadis, A. ( 1993 ) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73 – 82 | |
dc.identifier.citedreference | Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J., and Efstratiadis, A. ( 1993 ) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59 – 72 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.