Show simple item record

Damage evolution in SiC/SiC unidirectional composites by X‐ray tomography

dc.contributor.authorHilmas, Ashley M.
dc.contributor.authorSevener, Kathleen M.
dc.contributor.authorHalloran, John W.
dc.date.accessioned2020-03-17T18:33:08Z
dc.date.availableWITHHELD_15_MONTHS
dc.date.available2020-03-17T18:33:08Z
dc.date.issued2020-05
dc.identifier.citationHilmas, Ashley M.; Sevener, Kathleen M.; Halloran, John W. (2020). "Damage evolution in SiC/SiC unidirectional composites by X‐ray tomography." Journal of the American Ceramic Society 103(5): 3436-3447.
dc.identifier.issn0002-7820
dc.identifier.issn1551-2916
dc.identifier.urihttps://hdl.handle.net/2027.42/154464
dc.description.abstractMelt infiltrated SiC/SiC ceramic matrix composite unidirectional (UD) composite specimens were imaged under load using X‐ray microtomography techniques in order to visualize the evolution of damage accumulation and to quantify damage mechanisms within the composite such as matrix cracking and fiber breaking. The data obtained from these in situ tensile tests were used in comparison with current models and literature results. Three‐dimensional (3D) tomography images were used to measure the location and spacing of matrix cracking that occurred at increasing stress increments during testing within two UD composite specimens. The number of broken fibers and the location of each fiber break gap that occurred within the volume of both specimens were also quantified. The 3D locations of fiber breaks were correlated with the location of each matrix crack within the volume of the specimen and it was found that at the stress scanned directly before failure, most of the fiber breaks occur within 100 microns of a matrix crack.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherX‐ray computed tomography
dc.subject.othermechanical properties
dc.subject.otherceramic matrix composites
dc.titleDamage evolution in SiC/SiC unidirectional composites by X‐ray tomography
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154464/1/jace17017_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154464/2/jace17017.pdf
dc.identifier.doi10.1111/jace.17017
dc.identifier.sourceJournal of the American Ceramic Society
dc.identifier.citedreferenceBunsell AR, Piant A. A review of the development of three generations of small diameter silicon carbide fibres. J Mater Sci. 2006; 41 ( 3 ): 823 – 39.
dc.identifier.citedreferenceMansour R, Maillet E, Morscher GN. Monitoring interlaminar crack growth in ceramic matrix composites using electrical resistance. Scr Mater. 2015; 98: 9 – 12.
dc.identifier.citedreferenceWhitlow T, Jones E, Przybyla C. In‐situ damage monitoring of a SiC/SiC ceramic matrix composite using acoustic emission and digital image correlation. Compos Struct. 2016; 158: 245 – 51.
dc.identifier.citedreferenceBale HA, Haboub A, Macdowell AA, Nasiatka JR, Parkinson DY, Cox BN, et al. Real‐time quantitative imaging of failure events in materials under load at temperatures above 1,600°C. Nat Mater. 2013; 12 ( 1 ): 40 – 6.
dc.identifier.citedreferenceLarson NM, Zok FW. In‐situ 3D visualization of composite microstructure during polymer‐to‐ceramic conversion. Acta Mater. 2018; 144: 579 – 89.
dc.identifier.citedreferenceBernachy‐Barbe F, Gélébart L, Bornert M, Crépin J, Sauder C. Anisotropic damage behavior of SiC/SiC composite tubes: multiaxial testing and damage characterization. Compos A. 2015; 76: 281 – 8.
dc.identifier.citedreferenceChateau C, Gélébart L, Bornert M, Crépin J, Caldemaison D, Sauder C. Modeling of damage in unidirectional ceramic matrix composites and multi‐scale experimental validation on third generation SiC/SiC minicomposites. J Mech Phys Solids. 2014; 63 ( 1 ): 298 – 319.
dc.identifier.citedreferenceAroush DRB, Maire E, Gauthier C, Youssef S, Cloetens P, Wagner HD. A study of fracture of unidirectional composites using in situ high‐resolution synchrotron X‐ray microtomography. Compos Sci Tech. 2016; 66 ( 10 ): 1348 – 53.
dc.identifier.citedreferenceMazars V, Caty O, Couégnat G, Bouterf A, Roux S, Denneulin S, et al. Damage investigation and modeling of 3D woven ceramic matrix composites from X‐ray tomography in‐situ tensile tests. Acta Mater. 2017; 140: 130 – 9.
dc.identifier.citedreferenceLarson NM, Zok FW. Insights from in‐situ X‐ray computed tomography during axial impregnation of unidirectional fiber beds. Compos A. 2018; 107: 124 – 34.
dc.identifier.citedreferenceCarlton HD, Haboub A, Gallegos GF, Parkinson DY, MacDowell AA. Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng A. 2016; 651: 406 – 14.
dc.identifier.citedreferenceYun HM, DiCarlo JA. Comparison of the tensile, creep, and rupture strength properties of stoichiometric SiC fibers. Ceram Eng Sci Proc. 1999; 20 ( 3 ): 259 – 72.
dc.identifier.citedreferenceDunn D. The effect of fiber volume fraction in HiPerComp SiC-SiC composites. PhD [Dissertation], Alfred, New York: Alfred University; 2010.
dc.identifier.citedreferenceLamon J, Mazerat S, R’Mili M. Reinforcement of ceramic matrix composites: properties of SiC‐based filaments and tows. In: Bansal NP, Lamon J, editors. Ceramic matrix composites: materials, modeling, and technology. Hoboken, NJ: John Wiley & Sons Inc, 2014; p. 1 – 26.
dc.identifier.citedreferenceMaillet E, Singhal A, Hilmas A, Gao Y, Zhou Y, Henson G, et al. Combining in‐situ synchrotron X‐ray microtomography and acoustic emission to characterize damage evolution in ceramic matrix composites. J Eur Ceram Soc. 2019; 39 ( 13 ): 3546 – 56.
dc.identifier.citedreferenceBudiansky B, Hutchinson JW, Evans AG. Matrix fracture in fiber‐reinforced ceramics. J Mech Phys Solids. 1986; 34 ( 2 ): 167 – 89.
dc.identifier.citedreferenceBudiansky B, Evans AG, Hutchinson JW. Fiber‐matrix debonding effects on cracking in aligned fiber ceramic composites. Int J Solids Struct. 1995; 32 ( 3‐4 ): 315 – 28.
dc.identifier.citedreferenceHilmas A, Henson G, Singhal A, Gao Y, Schuster M. In‐situ observation of damage in unidirectional CMC laminates under tension. Ceram Int. (In Review, Ceramics International).
dc.identifier.citedreferenceMorscher GN, Gordon NA. Acoustic emission and electrical resistance in SiC‐based laminate ceramic composites tested under tensile loading. J Eur Ceram Soc. 2017; 37 ( 13 ): 3861 – 72.
dc.identifier.citedreferenceMeyer P. Experimental and numerical investigation of the damage response of ceramic matrix composites. PhD [Dissertation], Ann Arbor, MI: University of Michigan; 2015.
dc.identifier.citedreferenceHay RS, Chater RJ. Oxidation kinetics strength of Hi‐Nicalon TM ‐S SiC fiber after oxidation in dry and wet air. J Am Ceram Soc. 2017; 100 ( 9 ): 4110 – 30.
dc.identifier.citedreferenceCorman GS, Luthra KL. Silicon melt infiltrated ceramic composites (HiPerComp TM ). In: Bansal NP, editor. Handbook of ceramic composites. Boston, MA: Springer, 2005; p. 99 – 115.
dc.identifier.citedreferenceDiCarlo JA, Yun H‐M, Morscher GN, Bhatt RT. SiC/SiC composites for 1200°C and above. In: Bansal NP, editor. Handbook of ceramic composites. Boston, MA: Springer, 2005; p. 77 – 98.
dc.identifier.citedreferenceOhnabe H, Masaki S, Onozuka M, Miyahara K, Sasa T. Potential application of ceramic matrix composites to aero‐engine components. Compos A. 1999; 30 ( 4 ): 489 – 96.
dc.identifier.citedreferenceMorscher GN, Pugar VV. Melt‐infiltrated SiC composites for gas turbine engine applications. Proce ASME Turbo Expo: Power Land, Sea, Air. 2004; 2: 353 – 9.
dc.identifier.citedreferenceMarshall DB, Cox BN, Evans AG. The mechanics of matrix cracking in brittle‐matrix fiber composites. Acta Metall. 1985; 33 ( 11 ): 2013 – 21.
dc.identifier.citedreferenceThouless MD, Evans AG. Effects of pull‐out on the mecanical properties of ceramic‐matrix composites. Acta Metall. 1988; 36 ( 3 ): 517 – 22.
dc.identifier.citedreferenceRajan VP, Zok FW. Matrix cracking of fiber‐reinforced ceramic composites in shear. J Mech Phys Solids. 2014; 73: 3 – 21.
dc.identifier.citedreferenceParthasarathy TA, Cox B, Sudre O, Pryzbyla C, Cinibulk MK. Modeling environmentally induced property degradation of SiC/BN/SiC ceramic matrix composites. J Am Ceram Soc. 2018; 101 ( 3 ): 973 – 97.
dc.identifier.citedreferenceMeyer P, Waas AM. FEM predictions of damage in continious fiber ceramic matrix composites under transverse tension using the crack band method. Acta Mater. 2016; 102: 292 – 303.
dc.identifier.citedreferenceAveston J, Kelly A. Theory of multiple fracture of fibrous composites. J Mater Sci. 1973; 8: 352 – 62.
dc.identifier.citedreferenceEvans A, Zok F. The physics and mechanics of fiber‐reinforced brittle‐matrix composites. J Mater Sci. 1994; 29: 3857 – 96.
dc.identifier.citedreferenceLongbiao L. Modeling first matrix cracking stress of fiber‐reinforced ceramic‐matrix composites considering fiber fracture. Theor Appl Fract Mech. 2017; 92: 24 – 32.
dc.identifier.citedreferenceBeyerle D, Spearing S, Zok F, Evans A. Damage and failure in unidirectional ceramic‐matrix composites. J Am Ceram Soc. 1992; 75 ( 10 ): 19 – 25.
dc.identifier.citedreferenceSorenson B, Evans R. Analysis of damage in a ceramic matrix composite. Int J Dam Mech. 1992; 2: 246 – 71.
dc.identifier.citedreferenceMeyer P, Waas AM. Measurement of in situ‐full‐field strain maps on ceramic matrix composites at elevated temperature using digital image correlation. Exp Mech. 2015; 55 ( 5 ): 795 – 802.
dc.identifier.citedreferenceZok F, Spearing S. Matrix crack spacing in brittle matrix composites. Acta Metall Mater. 1992; 40: 2033 – 43.
dc.identifier.citedreferenceSevener KM, Tracy JM, Chen Z, Kiser JD, Daly S. Crack opening behavior in ceramic matrix compsoites. J Am Ceram Soc. 2017; 100 ( 10 ): 4734 – 47.
dc.identifier.citedreferenceMorscher GN, Gordon NA. Acoustic emission and electrical resistance in SiC‐based laminate ceramic compsoites tested under tensile loading. J Eur Ceram Soc. 2017; 37 ( 13 ): 3861 – 72.
dc.identifier.citedreferenceMorscher GN, Ojard G, Miller R, Gowayed Y, Santhosh U, Ahmad J, et al. Tensile creep and fatigue of Sylramic‐iBN melt‐infiltrated SiC matrix composites: retained properties, damage development, and failure mechanisms. Compos Sci Technol. 2008; 68 ( 15‐16 ): 3305 – 13.
dc.identifier.citedreferenceSmith CE, Morscher GN, Xia Z. Electrical resistance as a nondestructive evaluation technique for SiC/SiC ceramic matrix composites under creep‐rupture loading. Int J Appl Ceram Technol. 2011; 8 ( 2 ): 298 – 307.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.