Show simple item record

Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity

dc.contributor.authorBergerson, Joule A.
dc.contributor.authorBrandt, Adam
dc.contributor.authorCresko, Joe
dc.contributor.authorCarbajales‐dale, Michael
dc.contributor.authorMacLean, Heather L.
dc.contributor.authorMatthews, H. Scott
dc.contributor.authorMcCoy, Sean
dc.contributor.authorMcManus, Marcelle
dc.contributor.authorMiller, Shelie A.
dc.contributor.authorMorrow, William R.
dc.contributor.authorPosen, I. Daniel
dc.contributor.authorSeager, Thomas
dc.contributor.authorSkone, Timothy
dc.contributor.authorSleep, Sylvia
dc.date.accessioned2020-03-17T18:33:10Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-03-17T18:33:10Z
dc.date.issued2020-02
dc.identifier.citationBergerson, Joule A.; Brandt, Adam; Cresko, Joe; Carbajales‐dale, Michael ; MacLean, Heather L.; Matthews, H. Scott; McCoy, Sean; McManus, Marcelle; Miller, Shelie A.; Morrow, William R.; Posen, I. Daniel; Seager, Thomas; Skone, Timothy; Sleep, Sylvia (2020). "Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity." Journal of Industrial Ecology 24(1): 11-25.
dc.identifier.issn1088-1980
dc.identifier.issn1530-9290
dc.identifier.urihttps://hdl.handle.net/2027.42/154465
dc.description.abstractLife cycle assessment (LCA) analysts are increasingly being asked to conduct life cycleâ based systems level analysis at the earliest stages of technology development. While early assessments provide the greatest opportunity to influence design and ultimately environmental performance, it is the stage with the least available data, greatest uncertainty, and a paucity of analytic tools for addressing these challenges. While the fundamental approach to conducting an LCA of emerging technologies is akin to that of LCA of existing technologies, emerging technologies pose additional challenges. In this paper, we present a broad set of market and technology characteristics that typically influence an LCA of emerging technologies and identify questions that researchers must address to account for the most important aspects of the systems they are studying. The paper presents: (a) guidance to identify the specific technology characteristics and dynamic market context that are most relevant and unique to a particular study, (b) an overview of the challenges faced by early stage assessments that are unique because of these conditions, (c) questions that researchers should ask themselves for such a study to be conducted, and (d) illustrative examples from the transportation sector to demonstrate the factors to consider when conducting LCAs of emerging technologies. The paper is intended to be used as an organizing platform to synthesize existing methods, procedures and insights and guide researchers, analysts and technology developer to better recognize key study design elements and to manage expectations of study outcomes.
dc.publisherANL
dc.publisherWiley Periodicals, Inc.
dc.subject.otherearly stage technology assessment
dc.subject.otherenvironmental impacts
dc.subject.otherindustrial ecology
dc.subject.otherlife cycle assessment (LCA)
dc.subject.otherresearch and development (R&D)
dc.subject.otherunintended consequences
dc.titleLife cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154465/1/jiec12954-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154465/2/jiec12954.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154465/3/jiec12954_am.pdf
dc.identifier.doi10.1111/jiec.12954
dc.identifier.sourceJournal of Industrial Ecology
dc.identifier.citedreferenceShibasaki, M., Fischer, M., & Barthel, L. ( 2007 ). Effects on life cycle assessmentâ Scale up of processes. In S. Takata & Y. Umeda (Eds.), Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses (pp. 377 â 381 ). London: Springer. Retrieved from http://link.springer.com/10.1007/978-1-84628-935-4_65
dc.identifier.citedreferenceSathre, R., Scown, C. D., Morrow, W. R., Stevens, J. C., Sharp, I. D., Ager, J. W., â ¦ Greenblatt, J. B. ( 2014 ). Lifeâ cycle net energy assessment of largeâ scale hydrogen production via photoelectrochemical water splitting. Energy & Environmental Science, 7 ( 10 ), 3264 â 3278. https://doi.org/10.1039/C4EE01019A
dc.identifier.citedreferenceSchmidt, J. H., & Weidema, B. P. ( 2008 ). Shift in the marginal supply of vegetable oil. International Journal of Life Cycle Assessment, 13 ( 3 ), 235 â 239.
dc.identifier.citedreferenceSearchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., â ¦ Yu, T. ( 2008 ). Use of U.S. cropland for biofules increases greenhouse gases through emissions from landâ use chane. Science, 423 ( February ), 1238 â 1241.
dc.identifier.citedreferenceSharp, B. E., & Miller, S. A. ( 2016 ). Potential for integrating diffusion of innovation principles into life cycle assessment of emerging technologies. Environmental Science and Technology, 50 ( 6 ), 2771 â 2781.
dc.identifier.citedreferenceSimon, B., Bachtin, K., Kiliç, A., Amor, B., & Weil, M. ( 2016 ). Proposal of a framework for scaleâ up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications. Integrated Environmental Assessment and Management, 12 ( 3 ), 465 â 477.
dc.identifier.citedreferenceSmeets, E., Tabeau, A., Van Berkum, S., Moorad, J., Van Meijl, H., & Woltjer, G. ( 2014 ). The impact of the rebound effect of the use of first generation biofuels in the EU on greenhouse gas emissions: A critical review. Renewable and Sustainable Energy Reviews, 38, 393 â 403.
dc.identifier.citedreferenceSorrell, S., Dimitropoulos, J., & Sommerville, M. ( 2009 ). Empirical estimates of the direct rebound effect: A review. Energy Policy, 37 ( 4 ), 1356 â 1371.
dc.identifier.citedreferenceSteubing, B., Mutel, C., Suter, F., & Hellweg, S. ( 2016 ). Streamlining scenario analysis and optimization of key choices in value chains using a modular LCA approach. International Journal of Life Cycle Assessment, 21 ( 4 ), 510 â 522.
dc.identifier.citedreferenceSteubing, B., Reinhard, J., Zah, R., & Ludwig, C. ( 2011, June). What are the environmentally optimal uses of different biomass feedstocksâ Heating, electricity generation or transportation? Paper presented at ISIE 2011 Conference, Berkeley, CA.
dc.identifier.citedreferenceSuh, S., & Huppes, G. ( 2005 ). Methods for life cycle inventory of a product. Journal of Cleaner Production, 13 ( 7 ), 687 â 697.
dc.identifier.citedreferenceSuh, S., & Yang, Y. ( 2014 ). On the uncanny capabilities of consequential LCA. International Journal of Life Cycle Assessment, 19 ( 6 ), 1179 â 1184.
dc.identifier.citedreferenceSullivan, J., & Cabosâ Flores, E. ( 2001 ). Full vehicle LCAs: A review (SAE Technical Paper 2001â 01â 3725). https://doi.org/10.4271/2001-01-3725
dc.identifier.citedreferenceTriple bottom line. It consists of three Ps: Profit, people and planet. ( 2009 November 17). The Economist.
dc.identifier.citedreferenceTsang, M., Philippot, G., Aymonier, C., & Sonnemann, G. ( 2016 ). Anticipatory lifeâ cycle assessment of supercritical fluid synthesis of barium strontium titanate nanoparticles. Green Chemistry, 18, 4924 â 4933.
dc.identifier.citedreferenceTuomisto, H. L., & Teixeira De Mattos, M. J. ( 2011 ). Environmental impacts of cultured meat production. Environmental Science and Technology, 45 ( 14 ), 6117 â 6123.
dc.identifier.citedreferenceUS DOE (Department of Energy). ( 2012 ). Bioâ oil stabilization and commoditization_Funding Opportunity DEâ FOAâ 0000686.
dc.identifier.citedreferenceUS DOE (Department of Energy). ( 2014 ). Targeted algal biofuels and bioproducts (Tabb)_Funding Opportunity DEâ FOAâ 0001162.
dc.identifier.citedreferenceUS DOE (Department of Energy). ( 2016a ). Fossil energy research and development_Funding Opportunityâ DEâ FOAâ 0001622.
dc.identifier.citedreferenceUS DOE (Department of Energy). ( 2016b ). MEGAâ BIO: Bioproducts to enable biofuels_Funding Opportunity DEâ FOAâ 0001433.
dc.identifier.citedreferenceUS DOE (Department of Energy). ( 2017 ). Integrated biorefinery optimization_Funding Opportunity DEâ FOAâ 0001689.
dc.identifier.citedreferenceUS Government Accountability Office (GAO). ( 2010 ). Best practices: DOD can achieve better outcomes by standardizing the way manufacturing risks are managed (Report No. GAOâ 10â 439). Washington, DC: GAO.
dc.identifier.citedreferenceValsasina, L., Pizzol, M., Smetana, S., Georget, E., Mathys, A., & Heinz, V. ( 2017 ). Life cycle assessment of emerging technologies: The case of milk ultraâ high pressure homogenisation. Journal of Cleaner Production, 142, 2209 â 2217.
dc.identifier.citedreferenceVerma, A., Raj, R., Kumar, M., Ghandehariun, S., & Kumar, A. ( 2015 ). Assessment of renewable energy technologies for charging electric vehicles in Canada. Energy, 86, 548 â 559. https://doi.org/10.1016/j.energy.2015.04.010
dc.identifier.citedreferenceVillares, M., IŠıldar, A., Van der Giesen, C., & Guinée, J. ( 2017 ). Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from eâ waste. International Journal of Life Cycle Assessment, 22 ( 10 ), 1618 â 1633.
dc.identifier.citedreferenceVon Der Assen, N., Voll, P., Peters, M., & Bardow, A. ( 2014 ). Life cycle assessment of CO2 capture and utilization: A tutorial review. Chemical Society Reviews, 43 ( 23 ), 7982 â 7994.
dc.identifier.citedreferenceWalczak, K. A., Hutchins, M. J., & Dornfeld, D. ( 2014 ). Energy system design to maximize net energy production considering uncertainty in scaleâ up: A case study in artificial photosynthesis. Procedia CIRP, 15, 306 â 312. https://doi.org/10.1016/j.procir.2014.06.032
dc.identifier.citedreferenceWeidema, B. ( 2001 ). Avoiding coâ product allocation in lifeâ cycle assessment. Journal of Industrial Ecology, 4 ( 3 ), 11 â 33.
dc.identifier.citedreferenceWeidema, B., Wenzel, H., Petersen, C., & Hansen, K. ( 2004 ). The product, functional unit and reference flows in LCA. Copenhagen, Denmark: Danish Ministry of the Environment.
dc.identifier.citedreferenceWender, B. A., Foley, R. W., Guston, D. H., Seager, T. P., & Wiek, A. ( 2012 ). Anticipatory governance and anticipatory life cycle assessment of single wall carbon nanotube anode lithium ion batteries. Nanotechnology Law & Business, 9 ( 3 ), 201 â 216.
dc.identifier.citedreferenceWender, B. A., Foley, R. W., Hottle, T. A., Sadowski, J., Pradoâ Lopez, V., Eisenberg, D. A., â ¦ Seager, T. P. ( 2014a ). Anticipatory lifeâ cycle assessment for responsible research and innovation. Journal of Responsible Innovation, 1 ( 2 ), 200 â 207.
dc.identifier.citedreferenceWender, B. A., Foley, R. W., Pradoâ Lopez, V., Ravikumar, D., Eisenberg, D. A., Hottle, T. A., â ¦ Guston, D. H. ( 2014b ). Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies. Environmental Science & Technology, 48 ( 18 ), 10531 â 10538.
dc.identifier.citedreferenceWender, B. A., & Seager, T. P. ( 2011 ). Towards prospective life cycle assessment: Single wall carbon nanotubes for lithiumâ ion batteries. Proceedings of the 2011 IEEE International Symposium on Sustainable Systems and Technology (pp. 1â 4). Piscataway, NJ: IEEE. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5936889
dc.identifier.citedreferenceWhitefoot, K. S., Grimesâ Casey, H. G., Girata, C. E., Morrow, W. R., Winebrake, J. J., Keoleian, G. A., & Skerlos, S. J. ( 2011 ). Consequential life cycle assessment with marketâ driven design: Development and demonstration. Journal of Industrial Ecology, 15 ( 5 ), 726 â 742.
dc.identifier.citedreferenceZamagni, A., Guinée, J., Heijungs, R., Masoni, P., & Raggi, A. ( 2012 ). Lights and shadows in consequential LCA. International Journal of Life Cycle Assessment, 17 ( 7 ), 904 â 918.
dc.identifier.citedreferenceZhou, Y., Xu, G., Zhang, F., Minshall, T., Su, J., & Zhi, Q. ( 2012 ). Roadmapping an emerging energy technology: An exâ ante examination of dimethyl ether development in China. International Journal of Product Development, 17 ( 3/4 ), 296.
dc.identifier.citedreferenceAlfaro, J. F., Sharp, B. E., & Miller, S. A. ( 2010 ). Developing LCA techniques for emerging systems: Game theory, agent modeling as prediction tools. In Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology. Piscataway, NJ: IEEE. https://doi.org/10.1109/ISSST.2010.5507728
dc.identifier.citedreferenceANL (Argonne National Laboratory); NREL (National Renewable Energy Laboratory); PNL (Pacific Northwest National Laboratory). ( 2013 ). Renewable diesel from algal lipids: An integrated baseline for cost, emissions, and resource potential from a harmonized model. Argonne, IL: ANL.; Golden, CO: NREL; Richland, WA: PNNL.
dc.identifier.citedreferenceArvidsson, R., Tillman, A. M., Sandén, B. A., Janssen, M., Nordelöf, A., Kushnir, D., & Molander, S. ( 2017 ). Environmental assessment of emerging technologies: Recommendations for prospective LCA. Journal of Industrial Ecology, 22 ( 6 ), 1286 â 1294. https://doi.org/10.1111/jiec.12690
dc.identifier.citedreferenceCaduff, M., Huijbregts, M. A. J., Koehler, A., Althaus, H. J., & Hellweg, S. ( 2014 ). Scaling relationships in life cycle assessment: The case of heat production from biomass and heat pumps. Journal of Industrial Ecology, 18 ( 3 ), 393 â 406.
dc.identifier.citedreferenceCollingridge, D. ( 1980 ). The social control of technology. London, UK: Frances Printer.
dc.identifier.citedreferenceCooper, D. R., & Gutowski, T. G. ( 2018 ). Prospective environmental analyses of emerging technology: A critique, a proposal methodology, and a case study on incremental sheet forming. Journal of Industrial Ecology. Advance online publication. https://doi.org/10.1111/jiec.12748
dc.identifier.citedreferenceCramer, J. ( 2000 ). Early warning: Integrating ecoâ efficiency aspects into the product development process. Environmental Quality Management, 10 ( 2 ), 1 â 10.
dc.identifier.citedreferenceCucurachi, S., Borgonovo, E., & Heijungs, R. ( 2016 ). A protocol for the global sensitivity analysis of impact assessment models in life cycle assessment. Risk Analysis, 36 ( 2 ), 357 â 377.
dc.identifier.citedreferenceCucurachi, S., Van der Giesen, C., & Guinée, J. ( 2018 ). Exâ ante LCA of emerging technologies. Procedia CIRP, 69 ( May ), 463 â 468. https://doi.org/10.1016/j.procir.2017.11.005
dc.identifier.citedreferenceCuéllarâ Franca, R. M., & Azapagic, A. ( 2015 ). Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 9, 82 â 102.
dc.identifier.citedreferenceCurran, M. A. ( 2013 ). Life cycle assessment: A review of the methodology and its application to sustainability. Current Opinion in Chemical Enginering, 2 ( 3 ), 273 â 277.
dc.identifier.citedreferenceCurren, M. A., Mann, M., & Norris, G. ( 2005 ). The international workshop on electricity data for life cycle inventories. Journal of Cleaner Production, 13 ( 8 ), 853 â 862.
dc.identifier.citedreferenceDarga, J., & Gately, D. ( 1999 ). Income’s effect on car and vehicle ownership, worldwide: 1960â 2015. Transportation Research Part A, 33, 101 â 138.
dc.identifier.citedreferenceDavis, C., Nikolíc, I., & Dijkema, G. P. J. ( 2009 ). Integration of life cycle assessment into agentâ based modelling toward informed decisions on evolving infrastructure systems. Journal of Industrial Ecology, 13 ( 2 ), 306 â 325.
dc.identifier.citedreferenceEarles, J. M., & Halog, A. ( 2011 ). Consequential life cycle assessment: A review. International Journal of Life Cycle Assessment, 16 ( 5 ), 445 â 453.
dc.identifier.citedreferenceElkington, J. ( 1998 ). Cannibals with forks: The triple bottom line of 21st century business. Gabriola Island, Canada: New Society Publishers.
dc.identifier.citedreferenceEnvironmental Protection Agency (EPA). ( 2008 ). Life cycle assessment. Principles and practice (Report No. EPA/600/Râ 06/060). Cincinnati, OH: EPA.
dc.identifier.citedreferenceEuropean Commission (EC). ( 2018 ). CEâ SPIREâ 02â 2018: Processing of material feedstock using nonâ conventional energy sources (IA).
dc.identifier.citedreferenceEuropean Commission (EC). ( 2019 ). EUFRP. Retrieved from https://eplca.jrc.ec.europa.eu/EUFRP/
dc.identifier.citedreferenceFinkbeiner, M., Inaba, A., Tan, R. B. H., Christiansen, K., & Klüppel, H. J. ( 2006 ). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. International Journal of Life Cycle Assessment, 11 ( 2 ), 80 â 85.
dc.identifier.citedreferenceFinnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., â ¦ Suh, S. ( 2009 ). Recent developments in life cycle assessment. Journal of Environmental Management, 91 ( 1 ), 1 â 21.
dc.identifier.citedreferenceFisher, E., Mahajan, R. L., & Mitcham, C. ( 2006 ). Midstream modulation of technology: Governance from within. Bulletin of Science, Technology & Society, 26 ( 6 ), 485 â 496.
dc.identifier.citedreferenceFlorent, Q., & Enrico, B. ( 2015 ). Combining agentâ based modeling and life cycle assessment for the evaluation of mobility policies. Environmental Science and Technology, 49 ( 3 ), 1744 â 1751.
dc.identifier.citedreferenceFrosch, R. A., & Gallopoulos, N. E. ( 1989 ). Strategies for manufacturing. Scientific American, 261 ( 3 ), 144 â 152.
dc.identifier.citedreferenceGavankar, S., Anderson, S., & Keller, A. A. ( 2015 ). Critical components of uncertainty communication in life cycle assessments of emerging technologies: nanotechnology as a case study. Journal of Industrial Ecology, 19 ( 3 ), 468 â 479.
dc.identifier.citedreferenceGavankar, S., Suh, S., & Keller, A. A. ( 2015 ). The role of scale and technology maturity in life cycle assessment of emerging technologies: a case study on carbon nanotubes. Journal of Industrial Ecology, 19 ( 1 ), 51 â 60.
dc.identifier.citedreferenceVan der Giesen, C., Kleijn, R., & Kramer, G. J. ( 2014 ). Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2. Environmental Science and Technology, 48 ( 12 ), 7111 â 7121.
dc.identifier.citedreferenceGifford, M., Chester, M., Hristovski, K., & Westerhoff, P. ( 2016 ). Reducing environmental impacts of metal (hydr)oxide nanoparticle embedded anion exchange resins using anticipatory life cycle assessment. Environmental Science: Nano, 3 ( 6 ), 1351 â 1360.
dc.identifier.citedreferenceGregory, J. R., Noshadravan, A., Olivetti, E. A., & Kirchain, R. E. ( 2016 ). A methodology for robust comparative life cycle assessments incorporating uncertainty. Environmental Science and Technology, 50 ( 12 ), 6397 â 6405.
dc.identifier.citedreferenceGrönlund, J., Sjödin, D. R., & Frishammar, J. ( 2010 ). Open innovation and the stageâ gate process: A revised model for new product development. California Management Review, 52 ( 3 ), 106 â 131.
dc.identifier.citedreferenceGuinée, J. B., Cucurachi, S., Henriksson, P. J. G., & Heijungs, R. ( 2018 ). Digesting the alphabet soup of LCA. International Journal of Life Cycle Assessment, 23 ( 7 ), 1507 â 1511.
dc.identifier.citedreferenceHauschild, M. Z., Huijbregtsb, M. A. J., Jolliet, O., Macleod, M., Margni, M., Van De Meent, D., â ¦ Mckone, T. E. ( 2008 ). Building a model based on scientific consensus for life cycle impact assessment of chemicals: The search for harmony and parsimony. Environmental Science and Technology, 42 ( 19 ), 7032 â 7037.
dc.identifier.citedreferenceHawkins, T. R., Singh, B., Majeauâ Bettez, G., & Strømman, A. H. ( 2013 ). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology, 17, 53 â 64. https://doi.org/10.1111/j.1530-9290.2012.00532
dc.identifier.citedreferenceHesser, F. ( 2015 ). Environmental advantage by choice: Exâ ante LCA for a new Kraft pulp fibre reinforced polypropylene composite in comparison to reference materials. Composites Part B: Engineering, 79, 197 â 203. https://doi.org/10.1016/j.compositesb.2015.04.038
dc.identifier.citedreferenceHetherington, A. C., Borrion, A. L., Griffiths, O. G., & McManus, M. C. ( 2014 ). Use of LCA as a development tool within early research: Challenges and issues across different sectors. International Journal of Life Cycle Assessment, 19 ( 1 ), 130 â 143.
dc.identifier.citedreferenceHu, G. B. B. ( 2009 ). Modelling sustainable urban drainage system. International Journal of Production Economics, 122 ( 1 ), 366 â 375.
dc.identifier.citedreferenceHuijts, N. M. A., Molin, E. J. E., & Steg, L. ( 2012 ). Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. Renewable and Sustainable Energy Reviews, 16 ( 1 ), 525 â 531. https://doi.org/10.1016/j.rser.2011.08.018
dc.identifier.citedreferenceHung, C. R., Ellingsen, L. A. W., & Majeauâ Bettez, G. ( 2018 ). LiSET: A framework for earlyâ stage life cycle screening of emerging technologies. Journal of Industrial Ecology, https://doi.org/10.1111/jiec.12807
dc.identifier.citedreferenceHur, T., Lee, J., Ryu, J., & Kwon, E. ( 2005 ). Simplified LCA and matrix methods in identifying the environmental aspects of a product system. Journal of Environmental Management, 75, 229 â 237.
dc.identifier.citedreferenceIgos, E., Benetto, E., Meyer, R., Baustert, P., & Othoniel, B. ( 2019 ). How to treat uncertainties in life cycle assessment studies? International Journal of Life Cycle Assessment, 24 ( 4 ), 794 â 807.
dc.identifier.citedreferenceISO. ( 2006 ). ISO 14040:2006.
dc.identifier.citedreferenceJungbluth, N., Bauer, C., Dones, R., & Frischknecht, R. ( 2005 ). Life cycle assessment for emerging technologies: Case studies for photovoltaic and wind power. International Journal of Life Cycle Assessment, 10 ( 1 ), 24 â 34. Retrieved from http://download.springer.com/static/pdf/416/art:10.1065/lca2004.11.181.3.pdf?auth66=1415584655_45a6f3bb4181632be91caed66ca953f6&ext=.pdf
dc.identifier.citedreferenceKaniut, C., Cetiner, H., & Franzeck, J. ( 1997 ). Life cycle assessment of a complete carâ The mercedesâ benz approach. SAE Transactions, 106 ( 6 ), 2162 â 2169.
dc.identifier.citedreferenceKätelhön, A., Bardow, A., & Suh, S. ( 2016 ). stochastic technology choice model for consequential life cycle assessment. Environmental Science & Technology, 50 ( 23 ), 12575 â 12583.
dc.identifier.citedreferenceKendall, A., & Yuan, J. ( 2013 ). Comparing life cycle assessments of different biofuel options. Current Opinion in Chemical Biology, 17 ( 3 ), 439 â 443.
dc.identifier.citedreferenceKhanna, V., Bakshi, B. R., & Lee, L. J. ( 2008 ). Carbon nanofiber production: Life cycle energy consumption and environmental impact. Journal of Industrial Ecology, 12 ( 3 ), 394 â 410.
dc.identifier.citedreferenceKihm, A., & Trommer, S. ( 2014 ). The new car market for electric vehicles and the potential for fuel substitution. Energy Policy, 73, 147 â 157. https://doi.org/10.1016/j.enpol.2014.05.021
dc.identifier.citedreferenceKrey, V. ( 2014 ). Global energyâ climate scenarios and models: A review. Wiley Interdisciplinary Reviews: Energy and Environment, 3 ( 4 ), 363 â 383.
dc.identifier.citedreferenceLacirignola, M., Blanc, P., Girard, R., Pérezâ López, P., & Blanc, I. ( 2016 ). LCA of emerging technologies: Addressing high uncertainty on inputsâ variability when performing global sensitivity analysis. Science of the Total Environment, 578, 268 â 280. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S004896971632232X
dc.identifier.citedreferenceLloyd, S. M., & Ries, R. ( 2007 ). Characterizing, propagating, and analyzing uncertainty in lifeâ cycle assessment: A survey of quantitative approaches. Journal of Industrial Ecology, 11 ( 1 ), 161 â 179. Retrieved from https://doi.org/10.1162/jiec.2007.1136
dc.identifier.citedreferenceMacLean, H. L., & Lave, L. B. ( 1998 ). A life cycle model of an automobile. Environmental Science & Technology, 32 ( 3 ), 322A â 330A.
dc.identifier.citedreferenceMacLean, H. L., & Lave, L. B. ( 2003 ). Evaluating automobile fuel/propulsion technologies. Progress in Energy and Combustion Science, 29 ( 1 ), 1 â 69.
dc.identifier.citedreferenceMankins, J. C. ( 2009 ). Technology readiness assessments: A retrospective. Acta Astronautica, 65 ( 9â 10 ), 1216 â 1223.
dc.identifier.citedreferenceMarco, R., Ferruccio, M., Michele, G., Faraldi, P., & Polverini, D. ( 2007 ). Lifeâ cycle assessment simplification for modular products. In Advances in life cycle engineering for sustainable manufacturing businesses (pp. 53 â 58 ). Berlin, Germany: Springer.
dc.identifier.citedreferenceMattick, C. S., Landis, A. E., Allenby, B. R., & Genovese, N. J. ( 2015 ). Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environmental Science and Technology, 49 ( 19 ), 11941 â 11949.
dc.identifier.citedreferenceMendoza Beltran, A., Cox, B., Mutel, C., van Vuuren, D. P., Font Vivanco, D., Deetman, S., â ¦ Tukker, A. ( 2018 ). When the background matters: Using scenarios from integrated assessment models in prospective life cycle assessment. Journal of Industrial Ecology, https://doi.org/10.1111/jiec.12825
dc.identifier.citedreferenceMiller, S. A., & Keoleian, G. A. ( 2015 ). Framework for analyzing transformative technologies in life cycle assessment. Environmental Science and Technology, 49 ( 5 ), 3067 â 3075.
dc.identifier.citedreferenceMiller, S. A., Moysey, S., Sharp, B., & Alfaro, J. ( 2013 ). A stochastic approach to model dynamic systems in life cycle assessment. Journal of Industrial Ecology, 17 ( 3 ), 352 â 362.
dc.identifier.citedreferenceMitullah, W. V., & Vanderschuren, M. ( 2017 ). Nonâ motorized transport integration into urban transport planning in Africa. Abingdon, Oxon: Routledge.
dc.identifier.citedreferenceMoni, S. M., Mahmud, R., High, K. A., & Carbajalesâ Dale, M. ( 2019 ). Life cycle assessment of emerging technologies: A review. Under Review.
dc.identifier.citedreferenceMorgan, M. G. ( 2014 ). Use (and abuse) of expert elicitation in support of decision making for public policy. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 20 ), 7176 â 7184.
dc.identifier.citedreferenceMorrow, W. R., Shehabi, A., & Smith, S. J. ( 2015 ). Manufacturing cost levelization modelâ A user’s guide (Report No. LBNLâ 187989). Berkley, CA: Lawrence Berkley National Laboratory.
dc.identifier.citedreferenceNational Renewable Energy Laboratory (NREL). ( 2013 ). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: Diluteâ acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons (Report No. NREL/TPâ 5100â 60223). Golden, CO: NREL.
dc.identifier.citedreferencePesonen, H. L., Ekvall, T., Fleischer, G., Huppes, G., Jahn, C., Klos, Z. S., â ¦ Wenzel, H. ( 2000 ). Framework for scenario development in LCA. International Journal of Life Cycle Assessment, 5 ( 1 ), 21 â 30.
dc.identifier.citedreferencePiccinno, F., Hischier, R., Seeger, S., & Som, C. ( 2016 ). From laboratory to industrial scale: A scaleâ up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 135, 1085 â 1097. https://doi.org/10.1016/j.jclepro.2016.06.164
dc.identifier.citedreferencePiccinno, F., Hischier, R., Seeger, S., & Som, C. ( 2018 ). Predicting the environmental impact of a future nanocellulose production at industrial scale: Application of the life cycle assessment scaleâ up framework. Journal of Cleaner Production, 174, 283 â 295. https://doi.org/10.1016/j.jclepro.2017.10.226
dc.identifier.citedreferencePlevin, R. J., Delucchi, M. A., & Creutzig, F. ( 2014 ). Using attributional life cycle assessment to estimate climateâ change mitigation benefits misleads policy makers. Journal of Industrial Ecology, 18 ( 1 ), 73 â 83.
dc.identifier.citedreferenceRaugei, M., & Winfield, P. ( 2019 ). Prospective LCA of the production and EoL recycling of a novel type of Liâ ion battery for electric vehicles. Journal of Cleaner Production, 213, 926 â 932.
dc.identifier.citedreferenceRavikumar, D., Seager, T. P., Cucurachi, S., Prado, V., & Mutel, C. ( 2018 ). Novel method of sensitivity analysis improves the prioritization of research in anticipatory life cycle assessment of emerging technologies. Environmental Science and Technology, 52 ( 11 ), 6534 â 6543.
dc.identifier.citedreferenceReinhard, J., & Zah, R. ( 2008 ). Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. EMPA Activities, 35 ( 6 ), 2361 â 2373.
dc.identifier.citedreferenceReinhard, J., & Zah, R. ( 2009 ). Global environmental consequences of increased biodiesel consumption in Switzerland: Consequential life cycle assessment. Journal of Cleaner Production, 17 ( Suppl. 1 ), S46 â S56. https://doi.org/10.1016/j.jclepro.2009.05.003
dc.identifier.citedreferenceSakti, A., Michalek, J. J., Fuchs, E. R. H., & Whitacre, J. F. ( 2015 ). A technoâ economic analysis and optimization of Liâ ion batteries for lightâ duty passenger vehicle electrification. Journal of Power Sources, 273, 966 â 980. https://doi.org/10.1016/j.jpowsour.2014.09.078
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.