Show simple item record

Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis

dc.contributor.authorGumucio, Jonathan P.
dc.contributor.authorQasawa, Austin H.
dc.contributor.authorFerrara, Patrick J.
dc.contributor.authorMalik, Afshan N.
dc.contributor.authorFunai, Katsuhiko
dc.contributor.authorMcdonagh, Brian
dc.contributor.authorMendias, Christopher L.
dc.date.accessioned2020-03-17T18:33:53Z
dc.date.availableWITHHELD_5_MONTHS
dc.date.available2020-03-17T18:33:53Z
dc.date.issued2019-07
dc.identifier.citationGumucio, Jonathan P.; Qasawa, Austin H.; Ferrara, Patrick J.; Malik, Afshan N.; Funai, Katsuhiko; Mcdonagh, Brian; Mendias, Christopher L. (2019). "Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis." The FASEB Journal 33(7): 7863-7881.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154491
dc.description.abstractMyosteatosis is the pathologic accumulation of lipid that can occur in conjunction with atrophy and fibrosis following skeletal muscle injury. Little is known about the mechanisms by which lipid accumulates in myosteatosis, but many clinical studies have demonstrated that the degree of lipid infiltration negatively correlates with muscle function and regeneration. Our objective was to determine the pathologic changes that result in lipid accumulation in injured muscle fibers. We used a rat model of rotator cuff injury in this study because the rotator cuff muscle group is particularly prone to the development of myosteatosis after injury. Muscles were collected from uninjured controls or 10, 30, or 60 d after injury and analyzed using a combination of muscle fiber contractility assessments, RNA sequencing, and undirected metabolomics, lipidomics, and proteomics, along with bioinformatics techniques to identify potential pathways and cellular processes that are dysregulated after rotator cuff tear. Bioinformatics analyses indicated that mitochondrial function was likely disrupted after injury. Based on these findings and given the role that mitochondria play in lipid metabolism, we then performed targeted biochemical and imaging studies and determined that mitochondrial dysfunction and reduced fatty acid oxidation likely leads to the accumulation of lipid in myosteatosis.—Gumucio, J. P., Qasawa, A. H., Ferrara, P. J., Malik, A. N., Funai, K., McDonagh, B., Mendias, C. L. Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. FASEB J. 33, 7863–7881 (2019). www.fasebj.org
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfatty degeneration
dc.subject.otherrotator cuff
dc.subject.othermuscle injury
dc.subject.othermuscle atrophy
dc.titleReduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154491/1/fsb2fj201802457rr.pdf
dc.identifier.doi10.1096/fj.201802457RR
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceCarter, H. N., Chen, C. C., and Hood, D. A. ( 2015 ) Mitochondria, muscle health, and exercise with advancing age. Physiology (Bethesda) 30, 208 – 223
dc.identifier.citedreferenceMacPherson, R. E., and Peters, S. J. ( 2015 ) Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis. Appl. Physiol. Nutr. Metab. 40, 641 – 651
dc.identifier.citedreferenceKienesberger, P. C., Oberer, M., Lass, A., and Zechner, R. ( 2009 ) Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J. Lipid Res. 50 ( Suppl ), S63 – S68
dc.identifier.citedreferenceGlancy, B., Hartnell, L. M., Malide, D., Yu, Z. X., Combs, C. A., Connelly, P. S., Subramaniam, S., and Balaban, R. S. ( 2015 ) Mitochondrial reticulum for cellular energy distribution in muscle. Nature 523, 617 – 620
dc.identifier.citedreferenceMenshikova, E. V., Ritov, V. B., Fairfull, L., Ferrell, R. E., Kelley, D. E., and Goodpaster, B. H. ( 2006 ) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 534 – 540
dc.identifier.citedreferenceLarsen, S., Nielsen, J., Hansen, C. N., Nielsen, L. B., Wibrand, F., Stride, N., Schroder, H. D., Boushel, R., Helge, J. W., Dela, F., and Hey-Mogensen, M. ( 2012 ) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 590, 3349 – 3360
dc.identifier.citedreferenceAon, M. A., Bhatt, N., and Cortassa, S. C. ( 2014 ) Mitochondrial and cellular mechanisms for managing lipid excess. Front. Physiol. 5, 282
dc.identifier.citedreferenceOvermyer, K. A., Evans, C. R., Qi, N. R., Minogue, C. E., Carson, J. J., Chermside-Scabbo, C. J., Koch, L. G., Britton, S. L., Pagliarini, D. J., Coon, J. J., and Burant, C. F. ( 2015 ) Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation. Cell Metab. 21, 468 – 478
dc.identifier.citedreferenceZeng, J., and Li, D. ( 2004 ) Expression and purification of his-tagged rat peroxisomal acyl-CoA oxidase I wild-type and E421 mutant proteins. Protein Expr. Purif. 38, 153 – 160
dc.identifier.citedreferenceDemine, S., Reddy, N., Renard, P., Raes, M., and Arnould, T. ( 2014 ) Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites 4, 831 – 878
dc.identifier.citedreferenceWicks, S. E., Vandanmagsar, B., Haynie, K. R., Fuller, S. E., Warfel, J. D., Stephens, J. M., Wang, M., Han, X., Zhang, J., Noland, R. C., and Mynatt, R. L. ( 2015 ) Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism. Proc. Natl. Acad. Sci. USA 112, E3300 – E3309
dc.identifier.citedreferenceGram, M., Vigelsø, A., Yokota, T., Helge, J. W., Dela, F., and Hey-Mogensen, M. ( 2015 ) Skeletal muscle mitochondrial H2 O2 emission increases with immobilization and decreases after aerobic training in young and older men. J. Physiol. 593, 4011 – 4027
dc.identifier.citedreferenceBhattacharya, A., Muller, F. L., Liu, Y., Sabia, M., Liang, H., Song, W., Jang, Y. C., Ran, Q., and Van Remmen, H. ( 2009 ) Denervation induces cytosolic phospholipase A2-mediated fatty acid hydroperoxide generation by muscle mitochondria. J. Biol. Chem. 284, 46 – 55
dc.identifier.citedreferenceBhattacharya, A., Lustgarten, M., Shi, Y., Liu, Y., Jang, Y. C., Pulliam, D., Jernigan, A. L., and Van Remmen, H. ( 2011 ) Increased mitochondrial matrix-directed superoxide production by fatty acid hydroperoxides in skeletal muscle mitochondria. Free Radic. Biol. Med. 50, 592 – 601
dc.identifier.citedreferencePollock, N., Staunton, C. A., Vasilaki, A., McArdle, A., and Jackson, M. J. ( 2017 ) Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervated fibers: role in muscle aging. Free Radic. Biol. Med. 112, 84 – 92
dc.identifier.citedreferenceMa, S., Zhang, X., Zheng, L., Li, Z., Zhao, X., Lai, W., Shen, H., Lv, J., Yang, G., Wang, Q., and Ji, J. ( 2016 ) Peroxiredoxin 6 is a crucial factor in the initial step of mitochondrial clearance and is upstream of the PINK1-parkin pathway. Antioxid. Redox Signal. 24, 486 – 501
dc.identifier.citedreferenceWatabe, S., Hiroi, T., Yamamoto, Y., Fujioka, Y., Hasegawa, H., Yago, N., and Takahashi, S. Y. ( 1997 ) SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. Eur. J. Biochem. 249, 52 – 60
dc.identifier.citedreferencePowers, S. K., Morton, A. B., Ahn, B., and Smuder, A. J. ( 2016 ) Redox control of skeletal muscle atrophy. Free Radic. Biol. Med. 98, 208 – 217
dc.identifier.citedreferenceRichter, K., and Kietzmann, T. ( 2016 ) Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res. 365, 591 – 605
dc.identifier.citedreferenceDrake, J. C., and Yan, Z. ( 2017 ) Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing. J. Physiol. 595, 6391 – 6399
dc.identifier.citedreferenceTryon, L. D., Vainshtein, A., Memme, J. M., Crilly, M. J., and Hood, D. A. ( 2014 ) Recent advances in mitochondrial turnover during chronic muscle disuse. Integr. Med. Res. 3, 161 – 171
dc.identifier.citedreferenceCogswell, A. M., Stevens, R. J., and Hood, D. A. ( 1993 ) Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am. J. Physiol. 264, C383 – C389
dc.identifier.citedreferenceFerreira, R., Vitorino, R., Alves, R. M., Appell, H. J., Powers, S. K., Duarte, J. A., and Amado, F. ( 2010 ) Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics 10, 3142 – 3154
dc.identifier.citedreferenceKoves, T. R., Noland, R. C., Bates, A. L., Henes, S. T., Muoio, D. M., and Cortright, R. N. ( 2005 ) Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am. J. Physiol. Cell Physiol. 288, C1074 – C1082
dc.identifier.citedreferencePatel, K. D., Glancy, B., and Balaban, R. S. ( 2016 ) The electrochemical transmission in I-Band segments of the mitochondrial reticulum. Biochim. Biophys. Acta 1857, 1284 – 1289
dc.identifier.citedreferenceMears, J. A., Lackner, L. L., Fang, S., Ingerman, E., Nunnari, J., and Hinshaw, J. E. ( 2011 ) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20 – 26
dc.identifier.citedreferenceYamaguchi, K., Ditsios, K., Middleton, W. D., Hildebolt, C. F., Galatz, L. M., and Teefey, S. A. ( 2006 ) The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J. Bone Joint Surg. Am. 88, 1699 – 1704
dc.identifier.citedreferenceMendias, C. L., Roche, S. M., Harning, J. A., Davis, M. E., Lynch, E. B., Sibilsky Enselman, E. R., Jacobson, J. A., Claflin, D. R., Calve, S., and Bedi, A. ( 2015 ) Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears. J. Shoulder Elbow Surg. 24, 111 – 119
dc.identifier.citedreferenceFry, C. S., Johnson, D. L., Ireland, M. L., and Noehren, B. ( 2017 ) ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle. J. Orthop. Res. 35, 1876 – 1885
dc.identifier.citedreferenceGibbons, M. C., Singh, A., Anakwenze, O., Cheng, T., Pomerantz, M., Schenk, S., Engler, A. J., and Ward, S. R. ( 2017 ) Histological evidence of muscle degeneration in advanced human rotator cuff disease. J. Bone Joint Surg. Am. 99, 190 – 199
dc.identifier.citedreferenceCarda, S., Cisari, C., and Invernizzi, M. ( 2013 ) Sarcopenia or muscle modifications in neurologic diseases: a lexical or patophysiological difference? Eur. J. Phys. Rehabil. Med. 49, 119 – 130
dc.identifier.citedreferenceZoico, E., Corzato, F., Bambace, C., Rossi, A. P., Micciolo, R., Cinti, S., Harris, T. B., and Zamboni, M. ( 2013 ) Myosteatosis and myofibrosis: relationship with aging, inflammation and insulin resistance. Arch. Gerontol. Geriatr. 57, 411 – 416
dc.identifier.citedreferenceFlores, D. V., Mejía Gómez, C., Estrada-Castrillón, M., Smitaman, E., and Pathria, M. N. ( 2018 ) MR imaging of muscle trauma: anatomy, biomechanics, pathophysiology, and imaging appearance. Radiographics 38, 124 – 148
dc.identifier.citedreferenceBedi, A., Dines, J., Warren, R. F., and Dines, D. M. ( 2010 ) Massive tears of the rotator cuff. J. Bone Joint Surg. Am. 92, 1894 – 1908
dc.identifier.citedreferenceGladstone, J. N., Bishop, J. Y., Lo, I. K., and Flatow, E. L. ( 2007 ) Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am. J. Sports Med. 35, 719 – 728
dc.identifier.citedreferenceColvin, A. C., Egorova, N., Harrison, A. K., Moskowitz, A., and Flatow, E. L. ( 2012 ) National trends in rotator cuff repair. J. Bone Joint Surg. Am. 94, 227 – 233
dc.identifier.citedreferenceGigliotti, D., Leiter, J. R., Macek, B., Davidson, M. J., MacDonald, P. B., and Anderson, J. E. ( 2015 ) Atrophy, inducible satellite cell activation, and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle. Am. J. Physiol. Cell Physiol. 309, C383 – C391
dc.identifier.citedreferenceGerber, C., Schneeberger, A. G., Hoppeler, H., and Meyer, D. C. ( 2007 ) Correlation of atrophy and fatty infiltration on strength and integrity of rotator cuff repairs: a study in thirteen patients. J. Shoulder Elbow Surg. 16, 691 – 696
dc.identifier.citedreferenceGumucio, J. P., Davis, M. E., Bradley, J. R., Stafford, P. L., Schiffman, C. J., Lynch, E. B., Claflin, D. R., Bedi, A., and Mendias, C. L. ( 2012 ) Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy. J. Orthop. Res. 30, 1963 – 1970
dc.identifier.citedreferenceSoslowsky, L. J., Carpenter J. E., DeBano, C. M., Banerji, I., and Moalli, M. R. ( 1996 ) Development and use of an animal model for investigations on rotator cuff disease. J. Shoulder Elbow Surg. 5, 383 – 392
dc.identifier.citedreferenceLiu, X., Manzano, G., Kim, H. T., and Feeley, B. T. ( 2011 ) A rat model of massive rotator cuff tears. J. Orthop. Res. 29, 588 – 595
dc.identifier.citedreferenceDavis, M. E., Stafford, P. L., Jergenson, M. J., Bedi, A., and Mendias, C. L. ( 2015 ) Muscle fibers are injured at the time of acute and chronic rotator cuff repair. Clin. Orthop. Relat. Res. 473, 226 – 232
dc.identifier.citedreferenceMathewson, M. A., Kwan, A., Eng, C. M., Lieber, R. L., and Ward, S. R. ( 2014 ) Comparison of rotator cuff muscle architecture between humans and other selected vertebrate species. J. Exp. Biol. 217, 261 – 273
dc.identifier.citedreferenceMorag, Y., Jacobson, J. A., Miller, B., De Maeseneer, M., Girish, G., and Jamadar, D. ( 2006 ) MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics 26, 1045 – 1065
dc.identifier.citedreferenceWard, S. R., Sarver, J. J., Eng, C. M., Kwan, A., Würgler-Hauri, C. C., Perry, S. M., Williams, G. R., Soslowsky, L. J., and Lieber, R. L. ( 2010 ) Plasticity of muscle architecture after supraspinatus tears. J. Orthop. Sports Phys. Ther. 40, 729 – 735
dc.identifier.citedreferenceRoche, S. M., Gumucio, J. P., Brooks, S. V., Mendias, C. L., and Claflin, D. R. ( 2015 ) Measurement of maximum isometric force generated by permeabilized skeletal muscle fibers. J. Vis. Exp. ( 100 ), e52695
dc.identifier.citedreferenceClaflin, D. R., Larkin, L. M., Cederna, P. S., Horowitz J. F., Alexander, N. B., Cole, N. M., Galecki, A. T., Chen, S., Nyquist, L. V., Carlson, B. M., Faulkner J. A., and Ashton-Miller J. A. ( 2011 ) Effects of high-and low-velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. J. Appl. Physiol. 111, 1021 – 1030
dc.identifier.citedreferenceSugg, K. B., Korn, M. A., Sarver, D. C., Markworth, J. F., and Mendias, C. L. ( 2017 ) Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy. FEBS Lett. 591, 801 – 809
dc.identifier.citedreferenceMendias, C. L., Schwartz, A. J., Grekin J. A., Gumucio, J. P., and Sugg, K. B. ( 2017 ) Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy. J. Appl. Physiol. 122, 571 – 579
dc.identifier.citedreferenceSarver, D. C., Sugg, K. B., Disser, N. P., Enselman, E. R. S., Awan, T. M., and Mendias, C. L. ( 2017 ) Local cryotherapy minimally impacts the metabolome and transcriptome of human skeletal muscle. Sci. Rep. 7, 2423
dc.identifier.citedreferenceAfshinnia, F., Rajendiran, T. M., Soni, T., Byun, J., Wernisch, S., Sas, K. M., Hawkins, J., Bellovich, K., Gipson, D., Michailidis, G., and Pennathur, S.; Michigan Kidney Translational Core CPROBE Investigator Group. ( 2018 ) Impaired β-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. J. Am. Soc. Nephrol. 29, 295 – 306
dc.identifier.citedreferenceKind, T., Liu, K. H., Lee, D. Y., DeFelice, B., Meissen J. K., and Fiehn, O. ( 2013 ) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10, 755 – 758
dc.identifier.citedreferenceLorenz, M. A., Burant, C. F., and Kennedy, R. T. ( 2011 ) Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Anal. Chem. 83, 3406 – 3414
dc.identifier.citedreferenceTrapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L., and Pachter, L. ( 2012 ) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562 – 578; erratum: 9, 2513
dc.identifier.citedreferenceMcDonagh, B., Sakellariou, G. K., Smith, N. T., Brownridge, P., and Jackson, M. J. ( 2014 ) Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging. J. Proteome Res. 13, 5008 – 5021
dc.identifier.citedreferenceChong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., and Xia, J. ( 2018 ) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46 ( W1 ), W486 – W494
dc.identifier.citedreferenceAjaz, S., Czajka, A., and Malik, A. ( 2015 ) Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR. Methods Mol. Biol. 1264, 117 – 131
dc.identifier.citedreferenceDohm, G. L., Huston, R. L., Askew, E. W., and Weiser, P. C. ( 1972 ) Effects of exercise on activity of heart and muscle mitochondria. Am. J. Physiol. 223, 783 – 787
dc.identifier.citedreferenceJong-Yeon, K., Hickner, R. C., Dohm, G. L., and Houmard, J. A. ( 2002 ) Long- and medium-chain fatty acid oxidation is increased in exercise-trained human skeletal muscle. Metabolism 51, 460 – 464
dc.identifier.citedreferenceBaumer, T. G., Chan, D., Mende, V., Dischler, J., Zauel, R., van Holsbeeck, M., Siegal, D. S., Divine, G., Moutzouros, V., and Bey, M. J. ( 2016 ) Effects of rotator cuff pathology and physical therapy on in vivo shoulder motion and clinical outcomes in patients with a symptomatic full-thickness rotator cuff tear. Orthop. J. Sports Med. 4, 2325967116666506
dc.identifier.citedreferenceMeyer, G. A., Farris, A. L., Sato, E., Gibbons, M., Lane, J. G., Ward, S. R., and Engler, A. J. ( 2015 ) Muscle progenitor cell regenerative capacity in the torn rotator cuff. J. Orthop. Res. 33, 421 – 429
dc.identifier.citedreferenceGibbons, M. C., Sato, E. J., Bachasson, D., Cheng, T., Azimi, H., Schenk, S., Engler, A. J., Singh, A., and Ward, S. R. ( 2016 ) Muscle architectural changes after massive human rotator cuff tear. J. Orthop. Res. 34, 2089 – 2095
dc.identifier.citedreferenceValencia, A. P., Lai, J. K., Iyer, S. R., Mistretta, K. L., Spangenburg, E. E., Davis, D. L., Lovering, R. M., and Gilotra, M. N. ( 2018 ) Fatty infiltration is a prognostic marker of muscle function after rotator cuff tear. Am. J. Sports Med. 46, 2161 – 2169
dc.identifier.citedreferenceGumucio, J. P., Sugg, K. B., and Mendias, C. L. ( 2015 ) TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise. Exerc. Sport Sci. Rev. 43, 93 – 99
dc.identifier.citedreferenceElenich, L. A., Nandi, D., Kent, A. E., McCluskey, T. S., Cruz, M., Iyer, M. N., Woodward, E. C., Conn, C. W., Ochoa, A. L., Ginsburg, D. B., and Monaco, J. J. ( 1999 ) The complete primary structure of mouse 20S proteasomes. Immunogenetics 49, 835 – 842
dc.identifier.citedreferenceMendias, C. L., Gumucio, J. P., Davis, M. E., Bromley, C. W., Davis, C. S., and Brooks, S. V. ( 2012 ) Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve 45, 55 – 59
dc.identifier.citedreferenceSartori, R., Gregorevic, P., and Sandri, M. ( 2014 ) TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol. Metab. 25, 464 – 471
dc.identifier.citedreferenceYamaki, T., Wu, C. L., Gustin, M., Lim, J., Jackman, R. W., and Kandarian, S. C. ( 2012 ) Rel A/p65 is required for cytokine-induced myotube atrophy. Am. J. Physiol. Cell Physiol. 303, C135 – C142
dc.identifier.citedreferenceBoucher J., Kleinridders, A., and Kahn, C. R. ( 2014 ) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191
dc.identifier.citedreferenceWest, D. W., Baehr, L. M., Marcotte, G. R., Chason, C. M., Tolento, L., Gomes, A. V., Bodine, S. C., and Baar, K. ( 2016 ) Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle. J. Physiol. 594, 453 – 468
dc.identifier.citedreferenceBurnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H., and Sabatini, D. M. ( 1998 ) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl. Acad. Sci. USA 95, 1432 – 1437
dc.identifier.citedreferenceIijima, Y., Laser, M., Shiraishi, H., Willey, C. D., Sundaravadivel, B., Xu, L., McDermott, P. J., and Kuppuswamy, D. ( 2002 ) c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells. J. Biol. Chem. 277, 23065 – 23075
dc.identifier.citedreferenceTavares, M. R., Pavan, I. C., Amaral, C. L., Meneguello, L., Luchessi, A. D., and Simabuco, F. M. ( 2015 ) The S6K protein family in health and disease. Life Sci. 131, 1 – 10
dc.identifier.citedreferenceBiever, A., Valjent, E., and Puighermanal, E. ( 2015 ) Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front. Mol. Neurosci. 8, 75
dc.identifier.citedreferenceMarabita, M., Baraldo, M., Solagna, F., Ceelen, J. J. M., Sartori, R., Nolte, H., Nemazanyy, I., Pyronnet, S., Kruger, M., Pende, M., and Blaauw, B. ( 2016 ) S6K1 is required for increasing skeletal muscle force during hypertrophy. Cell Rep. 17, 501 – 513
dc.identifier.citedreferenceKillian, M. L., Lim, C. T., Thomopoulos, S., Charlton, N., Kim, H. M., and Galatz, L. M. ( 2013 ) The effect of unloading on gene expression of healthy and injured rotator cuffs. J. Orthop. Res. 31, 1240 – 1248
dc.identifier.citedreferenceWilde, J. M., Gumucio, J. P., Grekin, J. A., Sarver, D. C., Noah, A. C., Ruehlmann, D. G., Davis, M. E., Bedi, A., and Mendias, C. L. ( 2016 ) Inhibition of p38 mitogen-activated protein kinase signaling reduces fibrosis and lipid accumulation after rotator cuff repair. J. Shoulder Elbow Surg. 25, 1501 – 1508
dc.identifier.citedreferenceDavis, M. E., Korn, M. A., Gumucio, J. P., Harning, J. A., Saripalli, A. L., Bedi, A., and Mendias, C. L. ( 2015 ) Simvastatin reduces fibrosis and protects against muscle weakness after massive rotator cuff tear. J. Shoulder Elbow Surg. 24, 280 – 287
dc.identifier.citedreferenceZhang, C., and Gao, Y. ( 2014 ) Effects of aging on the lateral transmission of force in rat skeletal muscle. J. Biomech. 47, 944 – 948
dc.identifier.citedreferenceWatt, M. J., and Hoy, A. J. ( 2012 ) Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function. Am. J. Physiol. Endocrinol. Metab. 302, E1315 – E1328
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.