Show simple item record

Tissue‐specific regulation of cytochrome c by post‐translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis

dc.contributor.authorKalpage, Hasini A.
dc.contributor.authorBazylianska, Viktoriia
dc.contributor.authorRecanati, Maurice A.
dc.contributor.authorFite, Alemu
dc.contributor.authorLiu, Jenney
dc.contributor.authorWan, Junmei
dc.contributor.authorMantena, Nikhil
dc.contributor.authorMalek, Moh H.
dc.contributor.authorPodgorski, Izabela
dc.contributor.authorHeath, Elizabeth I.
dc.contributor.authorVaishnav, Asmita
dc.contributor.authorEdwards, Brian F.
dc.contributor.authorGrossman, Lawrence I.
dc.contributor.authorSanderson, Thomas H.
dc.contributor.authorLee, Icksoo
dc.contributor.authorHuttemann, Maik
dc.date.accessioned2020-03-17T18:34:08Z
dc.date.available2020-03-17T18:34:08Z
dc.date.issued2019-02
dc.identifier.citationKalpage, Hasini A.; Bazylianska, Viktoriia; Recanati, Maurice A.; Fite, Alemu; Liu, Jenney; Wan, Junmei; Mantena, Nikhil; Malek, Moh H.; Podgorski, Izabela; Heath, Elizabeth I.; Vaishnav, Asmita; Edwards, Brian F.; Grossman, Lawrence I.; Sanderson, Thomas H.; Lee, Icksoo; Huttemann, Maik (2019). "Tissue‐specific regulation of cytochrome c by post‐translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis." The FASEB Journal 33(2): 1540-1553.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154496
dc.description.abstractCytochrome c (Cytc) plays a vital role in the mitochondrial electron transport chain (ETC). In addition, it is a key regulator of apoptosis. Cytc has multiple other functions including ROS production and scavenging, cardiolipin peroxidation, and mitochondrial protein import. Cytc is tightly regulated by allosteric mechanisms, tissue‐specific isoforms, and post‐translational modifications (PTMs). Distinct residues of Cytc are modified by PTMs, primarily phosphorylations, in a highly tissue‐specific manner. These modifications downregulate mitochondrial ETC flux and adjust the mitochondrial membrane potential (ΔΨm), to minimize reactive oxygen species (ROS) production under normal conditions. In pathologic and acute stress conditions, such as ischemia–reperfusion, phosphorylations are lost, leading to maximum ETC flux, ΔΨm hyperpolarization, excessive ROS generation, and the release of Cytc. It is also the dephosphorylated form of the protein that leads to maximum caspase activation. We discuss the complex regulation of Cytc and propose that it is a central regulatory step of the mammalian ETC that can be rate limiting in normal conditions. This regulation is important because it maintains optimal intermediate ΔΨm, limiting ROS generation. We examine the role of Cytc PTMs, including phosphorylation, acetylation, methylation, nitration, nitrosylation, and sulfoxidation and consider their potential biological significance by evaluating their stoichiometry.—Kalpage, H. A., Bazylianska, V., Recanati, M. A., Fite, A., Liu, J., Wan, J., Mantena, N., Malek, M. H., Podgorski, I., Heath, E. I., Vaishnav, A., Edwards, B. F., Grossman, L. I., Sanderson, T. H., Lee, I., Hüttemann, M. Tissue‐specific regulation of cytochrome c by post‐translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J. 33, 1540–1553 (2019). www.fasebj.org
dc.publisherWiley Periodicals, Inc.
dc.publisherFederation of American Societies for Experimental Biology
dc.subject.otherphosphorylation
dc.subject.othersignal transduction
dc.subject.otherreactive oxygen species
dc.subject.otherelectron transport chain
dc.subject.otherischemia-reperfusion
dc.titleTissue‐specific regulation of cytochrome c by post‐translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154496/1/fsb2fj201801417r.pdf
dc.identifier.doi10.1096/fj.201801417R
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceKim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J., and Zhao, Y. ( 2006 ) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607 – 618
dc.identifier.citedreferenceWang, Z., Ando, Y., Nugraheni, A. D., Ren, C., Nagao, S., and Hirota, S. ( 2014 ) Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met-heme iron bond. Mol. Biosyst. 10, 3130 – 3137
dc.identifier.citedreferenceGodoy, L. C., Muñoz-Pinedo, C., Castro, L., Cardaci, S., Schonhoff, C. M., King, M., Tórtora, V., Marín, M., Miao, Q., Jiang, J. F., Kapralov, A., Jemmerson, R., Silkstone, G. G., Patel, J. N., Evans, J. E., Wilson, M. T., Green, D. R., Kagan, V. E., Radi, R., and Mannick, J. B. ( 2009 ) Disruption of the M80-Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in non-apoptotic cells. Proc. Natl. Acad. Sci. USA 106, 2653 – 2658
dc.identifier.citedreferenceRadi, R., Cassina, A., Hodara, R., Quijano, C., and Castro, L. ( 2002 ) Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med. 33, 1451 – 1464
dc.identifier.citedreferenceRadi, R. ( 2004 ) Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA 101, 4003 – 4008
dc.identifier.citedreferenceXu, S., Ying, J., Jiang B., Guo, W., Adachi, T., Sharov, V., Lazar, H., Menzoian, J., Knyushko, T. V., Bigelow, D., Schöneich, C., and Cohen, R. A. ( 2006 ) Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am. J. Physiol. Heart Circ. Physiol. 290, H2220 – H2227
dc.identifier.citedreferenceMacMillan-Crow, L. A., Crow, J. P., Kerby, J. D., Beckman, J. S., and Thompson, J. A. ( 1996 ) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl. Acad. Sci. USA 93, 11853 – 11858
dc.identifier.citedreferenceGarcía-Heredia, J. M., Díaz-Moreno, I., Nieto, P. M., Orzáez, M., Kocanis, S., Teixeira, M., Pérez-Payá, E., Díaz-Quintana, A., and De la Rosa, M. A. ( 2010 ) Nitration of tyrosine 74 prevents human cytochrome c to play a key role in apoptosis signaling by blocking caspase-9 activation. Biochim. Biophys. Acta 1797, 981 – 993
dc.identifier.citedreferenceBatthyány, C., Souza, J. M., Durán, R., Cassina, A., Cerveñansky, C., and Radi, R. ( 2005 ) Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Biochemistry 44, 8038 – 8046
dc.identifier.citedreferenceRodríguez-Roldán, V., García-Heredia, J. M., Navarro, J. A., De la Rosa, M. A., and Hervás, M. ( 2008 ) Effect of nitration on the physicochemical and kinetic features of wild-type and monotyrosine mutants of human respiratory cytochrome c. Biochemistry 47, 12371 – 12379
dc.identifier.citedreferenceDíaz-Moreno, I., García-Heredia, J. M., Díaz-Quintana, A., Teixeira, M., and De la Rosa, M. A. ( 2011 ) Nitration of tyrosines 46 and 48 induces the specific degradation of cytochrome c upon change of the heme iron state to high-spin. Biochim. Biophys. Acta 1807, 1616 – 1623
dc.identifier.citedreferenceCruthirds, D. L., Novak, L., Akhi, K. M., Sanders, P. W., Thompson, J. A., and MacMillan-Crow, L. A. ( 2003 ) Mitochondrial targets of oxidative stress during renal ischemia/reperfusion. Arch. Biochem. Biophys. 412, 27 – 33
dc.identifier.citedreferenceAlonso, D., Encinas, J. M., Uttenthal, L. O., Boscá, L., Serrano, J., Fernández, A. P., Castro-Blanco, S., Santacana, M., Bentura, M. L., Richart, A., Fernández-Vizarra, P., and Rodrigo, J. ( 2002 ) Coexistence of translocated cytochrome c and nitrated protein in neurons of the rat cerebral cortex after oxygen and glucose deprivation. Neuroscience 111, 47 – 56
dc.identifier.citedreferenceUeta, E., Kamatani, T., Yamamoto, T., and Osaki, T. ( 2003 ) Tyrosine-nitration of caspase 3 and cytochrome c does not suppress apoptosis induction in squamous cell carcinoma cells. Int. J. Cancer 103, 717 – 722
dc.identifier.citedreferenceMacMillan-Crow, L. A., Cruthirds, D. L., Ahki, K. M., Sanders, P. W., and Thompson, J. A. ( 2001 ) Mitochondrial tyrosine nitration precedes chronic allograft nephropathy. Free Radic. Biol. Med. 31, 1603 – 1608
dc.identifier.citedreferenceNakagawa, H., Komai, N., Takusagawa, M., Miura, Y., Toda, T., Miyata, N., Ozawa, T., and Ikota, N. ( 2007 ) Nitration of specific tyrosine residues of cytochrome C is associated with caspase-cascade inactivation. Biol. Pharm. Bull. 30, 15 – 20
dc.identifier.citedreferenceGarcía-Heredia, J. M., Díaz-Moreno, I., Díaz-Quintana, A., Orzáez, M., Navarro, J. A., Hervás, M., and De la Rosa, M. A. ( 2012 ) Specific nitration of tyrosines 46 and 48 makes cytochrome c assemble a non-functional apoptosome. FEBS Lett. 586, 154 – 158
dc.identifier.citedreferenceKong, S. K., Yim, M. B., Stadtman, E. R., and Chock, P. B. ( 1996 ) Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6-20)NH2 peptide. Proc. Natl. Acad. Sci. USA 93, 3377 – 3382
dc.identifier.citedreferenceCassina, A. M., Hodara, R., Souza, J. M., Thomson, L., Castro, L., Ischiropoulos, H., Freeman, B. A., and Radi, R. ( 2000 ) Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 275, 21409 – 21415
dc.identifier.citedreferencePal, P. K., Verma, B., and Myer, Y. P. ( 1975 ) Conformational and functional studies of chemically modified cytochrome c: nitrated and iodinated cytochromes c. Biochemistry 14, 4325 – 4334
dc.identifier.citedreferenceOursler, M. J., Bradley, E. W., Elfering, S. L., and Giulivi, C. ( 2005 ) Native, not nitrated, cytochrome c and mitochondria-derived hydrogen peroxide drive osteoclast apoptosis. Am. J. Physiol. Cell Physiol. 288, C156 – C168
dc.identifier.citedreferenceAbriata, L. A., Cassina, A., Tortora, V., Marín, M., Souza, J. M., Castro, L., Vila, A. J., and Radi, R. ( 2009 ) Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption nuclear magnetic resonance and optical spectroscopy studies. J. Biol. Chem. 284, 17 – 26
dc.identifier.citedreferenceCapdevila, D. A., Álvarez-Paggi, D., Castro, M. A., Tórtora, V., Demicheli, V., Estrín, D. A., Radi, R., and Murgida, D. H. ( 2014 ) Coupling of tyrosine deprotonation and axial lig and exchange in nitrocytochrome c. Chem. Commun. (Camb.) 50, 2592 – 2594
dc.identifier.citedreferenceStamler, J. S., Lamas, S., and Fang, F. C. ( 2001 ) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106, 675 – 683
dc.identifier.citedreferenceHess, D. T., and Stamler, J. S. ( 2012 ) Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 287, 4411 – 4418
dc.identifier.citedreferenceAscenzi, P., Coletta, M., Santucci, R., Polizio, F., and Desideri, A. ( 1994 ) Nitric oxide binding to ferrous native horse heart cytochrome c and to its carboxymethylated derivative: a spectroscopic and thermodynamic study. J. Inorg. Biochem. 53, 273 – 280
dc.identifier.citedreferenceSharpe, M. A., and Cooper, C. E. ( 1998 ) Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem. J. 332, 9 – 19
dc.identifier.citedreferenceSchonhoff, C. M., Gaston, B., and Mannick, J. B. ( 2003 ) Nitrosylation of cytochrome c during apoptosis. J. Biol. Chem. 278, 18265 – 18270
dc.identifier.citedreferenceBrown, G. C., and Cooper, C. E. ( 1994 ) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 356, 295 – 298
dc.identifier.citedreferenceCleeter, M. W., Cooper, J. M., Darley-Usmar, V. M., Moneada, S., and Schapira, A. H. ( 1994 ) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 345, 50 – 54
dc.identifier.citedreferenceYoo, B. K., Lamarre, I., Martin, J. L., Rappaport, F., and Negrerie, M. ( 2015 ) Motion of proximal histidine and structural allosteric transition in soluble guanylate cyclase. Proc. Natl. Acad. Sci. USA 112, E1697 – E1704
dc.identifier.citedreferenceArnold, W. P., Mittal, C. K., Katsuki, S., and Murad, F. ( 1977 ) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 74, 3203 – 3207
dc.identifier.citedreferenceCooper, C. E. ( 1999 ) Nitric oxide and iron proteins. Biochim. Biophys. Acta 1411, 290 – 309
dc.identifier.citedreferencePatriarca, A., Eliseo, T., Sinibaldi, F., Piro, M. C., Melis, R., Paci, M., Cicero, D. O., Polticelli, F., Santucci, R., and Fiorucci, L. ( 2009 ) ATP acts as a regulatory effector in modulating structural transitions of cytochrome c: implications for apoptotic activity. Biochemistry 48, 3279 – 3287
dc.identifier.citedreferenceKawai, C., Pessoto, F. S., Graves, C. V., Carmona-Ribeiro, A. M., and Nantes, I. L. ( 2013 ) Effects of transmembrane potential and pH gradient on the cytochrome c -promoted fusion of mitochondrial mimetic membranes. J. Bioenerg. Biomembr. 45, 421 – 430
dc.identifier.citedreferenceDeLange, R. J., Glazer, A. N., and Smith, E. L. ( 1969 ) Presence and location of an unusual amino acid, epsilon-N-trimethyllysine, in cytochrome c of wheat germ and Neurospora. J. Biol. Chem. 244, 1385 – 1388
dc.identifier.citedreferenceScott, W. A., and Mitchell, H. K. ( 1969 ) Secondary modification of cytochrome c by Neurospora crassa. Biochemistry 8, 4282 – 4289
dc.identifier.citedreferenceLi, K., Li, Y., Shelton, J. M., Richardson, J. A., Spencer, E., Chen, Z. J., Wang, X., and Williams, R. S. ( 2000 ) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101, 389 – 399
dc.identifier.citedreferenceMorriss, G. M., and New, D. A. ( 1979 ) Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos. J. Embryol. Exp. Morphol. 54, 17 – 35
dc.identifier.citedreferenceVempati, U. D., Han, X., and Moraes, C. T. ( 2009 ) Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV. J. Biol. Chem. 284, 4383 – 4391
dc.identifier.citedreferenceBelikova, N. A., Vladimirov, Y. A., Osipov, A. N., Kapralov, A. A., Tyurin, V. A., Potapovich, M. V., Basova, L. V., Peterson, J., Kurnikov, I. V., and Kagan, V. E. ( 2006 ) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 45, 4998 – 5009
dc.identifier.citedreferenceKagan, V. E., Bayir, H. A., Belikova, N. A., Kapralov, O., Tyurina, Y. Y., Tyurin, V. A., Jiang, J., Stoyanovsky, D. A., Wipf, P., Kochanek, P. M., Greenberger, J. S., Pitt, B., Shvedova, A. A., and Borisenko, G. ( 2009 ) Cytochrome c/ cardiolipin relations in mitochondria: a kiss of death. Free Radic. Biol. Med. 46, 1439 – 1453
dc.identifier.citedreferenceRajagopal, B. S., Edzuma, A. N., Hough, M. A., Blundell, K. L., Kagan, V. E., Kapralov, A. A., Fraser, L. A., Butt, J. N., Silkstone, G. G., Wilson, M. T., Svistunenko, D. A., and Worrall, J. A. ( 2013 ) The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant. Biochem. J. 456, 441 – 452
dc.identifier.citedreferenceRytömaa, M., and Kinnunen, P. K. ( 1994 ) Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J. Biol. Chem. 269, 1770 – 1774
dc.identifier.citedreferenceHagihara, Y., Tan, Y., and Goto, Y. ( 1994 ) Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. Effects of acetylation, heat, urea and guanidine-hydrochloride. J. Mol. Biol. 237, 336 – 348
dc.identifier.citedreferenceAlvarez-Paggi, D., Hannibal, L., Castro, M. A., Oviedo-Rouco, S., Demicheli, V., Tortora, V., Tomasina, F., Radi, R., and Murgida, D. H. ( 2017 ) Multifunctional cytochrome c: learning new tricks from an old dog. Chem. Rev. 117, 13382 – 13460
dc.identifier.citedreferenceMartínez-Fábregas, J., Díaz-Moreno, I., González-Arzola, K., Díaz-Quintana, A., and De la Rosa, M. A. ( 2014 ) A common signalosome for programmed cell death in humans and plants. Cell Death Dis. 5, e1314
dc.identifier.citedreferenceGiorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., Pelliccia, G., Luzi, L., Minucci, S., Marcaccio, M., Pinton, P., Rizzuto, R., Bernardi, P., Paolucci, F., and Pelicci, P. G. ( 2005 ) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122, 221 – 233
dc.identifier.citedreferenceMigliaccio, E., Mele, S., Salcini, A. E., Pelicci, G., Lai, K. M., Superti-Furga, G., Pawson, T., Di Fiore, P. P., Lanfrancone, L., and Pelicci, P. G. ( 1997 ) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J. 16, 706 – 716
dc.identifier.citedreferenceMigliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., Lanfrancone, L., and Pelicci, P. G. ( 1999 ) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309 – 313
dc.identifier.citedreferenceFrancia, P., delli Gatti, C., Bachschmid, M., Martin-Padura, I., Savoia, C., Migliaccio, E., Pelicci, P. G., Schiavoni, M., Lüscher, T. F., Volpe, M., and Cosentino, F. ( 2004 ) Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 110, 2889 – 2895
dc.identifier.citedreferenceOrsini, F., Migliaccio, E., Moroni, M., Contursi, C., Raker, V. A., Piccini, D., Martin-Padura, I., Pelliccia, G., Trinei, M., Bono, M., Puri, C., Tacchetti, C., Ferrini, M., Mannucci, R., Nicoletti, I., Lanfrancone, L., Giorgio, M., and Pelicci, P. G. ( 2004 ) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J. Biol. Chem. 279, 25689 – 25695
dc.identifier.citedreferencePinton, P., Rimessi, A., Marchi, S., Orsini, F., Migliaccio, E., Giorgio, M., Contursi, C., Minucci, S., Mantovani, F., Wieckowski, M. R., Del Sal, G., Pelicci, P. G., and Rizzuto, R. ( 2007 ) Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315, 659 – 663
dc.identifier.citedreferenceLebiedzinska, M., Duszynski, J., Rizzuto, R., Pinton, P., and Wieckowski, M. R. ( 2009 ) Age-related changes in levels of p66Shc and serine 36-phosphorylated p66Shc in organs and mouse tissues. Arch. Biochem. Biophys. 486, 73 – 80
dc.identifier.citedreferenceSun, L., Xiao, L., Nie, J., Liu, F. Y., Ling, G. H., Zhu, X. J., Tang, W. B., Chen, W. C., Xia, Y. C., Zhan, M., Ma, M. M., Peng, Y. M., Liu, H., Liu, Y. H., and Kanwar, Y. S. ( 2010 ) p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway. Am. J. Physiol. Renal Physiol. 299, F1014 – F1025
dc.identifier.citedreferenceArany, I., Clark, J. S., Reed, D. K., Juncos, L. A., and Dixit, M. ( 2013 ) Role of p66shc in renal toxicity of oleic acid. Am. J. Nephrol. 38, 226 – 232
dc.identifier.citedreferenceArany, I., Clark, J. S., Reed, D., Szabó, I., Ember, I., and Juncos, L. A. ( 2013 ) The role of p66shc in taxol- and dichloroacetic acid-dependent renal toxicity. Anticancer Res. 33, 3119 – 3122
dc.identifier.citedreferenceArany, I., Clark, J., Reed, D. K., and Juncos, L. A. ( 2013 ) Chronic nicotine exposure augments renal oxidative stress and injury through transcriptional activation of p66shc. Nephrol. Dial. Transplant. 28, 1417 – 1425
dc.identifier.citedreferenceKorshunov, S. S., Krasnikov, B. F., Pereverzev, M. O., and Skulachev, V. P. ( 1999 ) The antioxidant functions of cytochrome c. FEBS Lett. 462, 192 – 198
dc.identifier.citedreferenceWang, Z. B., Li, M., Zhao, Y., and Xu, J. X. ( 2003 ) Cytochrome C is a hydrogen peroxide scavenger in mitochondria. Protein Pept. Lett. 10, 247 – 253
dc.identifier.citedreferencePereverzev, M. O., Vygodina, T. V., Konstantinov, A. A., and Skulachev, V. P. ( 2003 ) Cytochrome c, an ideal antioxidant. Biochem. Soc. Trans. 31, 1312 – 1315
dc.identifier.citedreferenceVitvitsky, V., Miljkovic, J. L., Bostelaar, T., Adhikari, B., Yadav, P. K., Steiger, A. K., Torregrossa, R., Pluth, M. D., Whiteman, M., Banerjee, R., and Filipovic, M. R. ( 2018 ) Cytochrome c reduction by H 2 S potentiates sulfide signaling. ACS Chem. Biol. 13, 2300 – 2307
dc.identifier.citedreferenceMills, G. C. ( 1991 ) Cytochrome c: gene structure, homology and ancestral relationships. J. Theor. Biol. 152, 177 – 190
dc.identifier.citedreferenceLiu, Z., Lin, H., Ye, S., Liu, Q. Y., Meng, Z., Zhang, C. M., Xia, Y., Margoliash, E., Rao, Z., and Liu, X. J. ( 2006 ) Remarkably high activities of testicular cytochrome c in destroying reactive oxygen species and in triggering apoptosis. Proc. Natl. Acad. Sci. USA 103, 8965 – 8970
dc.identifier.citedreferenceHüttemann, M. Jaradat S., and Grossman, L. I. ( 2003 ) Cytochrome c oxidase of mammals contains a testes‐specific isoform of subunit VIb: the counterpart to testes‐specific cytochrome c ? Mol. Reprod. Dev. 66, 8 – 16
dc.identifier.citedreferenceZhang, Z., and Gerstein, M. ( 2003 ) The human genome has 49 cytochrome c pseudogenes, including a relic of a primordial gene that still functions in mouse. Gene 312, 61 – 72
dc.identifier.citedreferencePierron, D., Opazo, J. C., Heiske, M., Papper, Z., Uddin, M., Chand, G., Wildman, D. E., Romero, R., Goodman, M., and Grossman, L. I. ( 2011 ) Silencing, positive selection and parallel evolution: busy history of primate cytochromes C. PLoS One 6, e26269
dc.identifier.citedreferenceSchmidt, T. R., Wildman, D. E., Uddin, M., Opazo, J. C., Goodman, M., and Grossman, L. I. ( 2005 ) Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates. Proc. Natl. Acad. Sci. USA 102, 6379 – 6384
dc.identifier.citedreferenceAllen, S., Balabanidou, V., Sideris, D. P., Lisowsky, T., and Tokatlidis, K. ( 2005 ) Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J. Mol. Biol. 353, 937 – 944
dc.identifier.citedreferenceBihlmaier, K., Mesecke, N., Terziyska, N., Bien, M., Hell, K., and Herrmann, J. M. ( 2007 ) The disulfide relay system of mitochondria is connected to the respiratory chain. J. Cell Biol. 179, 389 – 395
dc.identifier.citedreferenceBoehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T., and Snyder, S. H. ( 2003 ) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis [published correction appears in Nat. Cell Biol. (2004) 6, 77]. Nat. Cell Biol. 5, 1051 – 1061
dc.identifier.citedreferenceBoehning, D., Patterson, R. L., and Snyder, S. H. ( 2004 ) Apoptosis and calcium: new roles for cytochrome c and inositol 1,4,5-trisphosphate. Cell Cycle 3, 252 – 254
dc.identifier.citedreferenceBeresewicz, M., Kowalczyk, J. E., and Zabłocka, B. ( 2006 ) Cytochrome c binds to inositol (1,4,5) trisphosphate and ryanodine receptors in vivo after transient brain ischemia in gerbils. Neurochem. Int. 48, 568 – 571
dc.identifier.citedreferenceElena-Real, C. A., Díaz-Quintana, A., González-Arzola, K., Velázquez-Campoy, A., Orzáez, M., López-Rivas, A., Gil-Caballero, S., De la Rosa, M. A., and Díaz-Moreno, I. ( 2018 ) Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition. Cell Death Dis. 9, 365
dc.identifier.citedreferenceCohen, H. J., Betcher-Lange, S., Kessler, D. L., and Rajagopalan, K. V. ( 1972 ) Hepatic sulfite oxidase: congruency in mitochondria of prosthetic groups and activity. J. Biol. Chem. 247, 7759 – 7766
dc.identifier.citedreferenceVelayutham, M., Hemann, C. F., Cardounel, A. J., and Zweier, J. L. ( 2016 ) Sulfite oxidase activity of cytochrome c. role of hydrogen peroxide. Biochem. Biophys. Rep. 5, 96 – 104
dc.identifier.citedreferenceWebb, M., Stonehuerner, J., and Millett, F. ( 1980 ) The use of specific lysine modifications to locate the reaction site of cytochrome c with sulfite oxidase. Biochim. Biophys. Acta 593, 290 – 298
dc.identifier.citedreferenceNur-E-Kamal, A., Gross, S. R., Pan, Z., Balklava, Z., Ma, J., and Liu, L. F. ( 2004 ) Nuclear translocation of cytochrome c during apoptosis. J. Biol. Chem. 279, 24911 – 24914
dc.identifier.citedreferenceGonzález-Arzola, K., Díaz-Moreno, I., Cano-González, A., Díaz-Quintana, A., Velázquez-Campoy, A., Moreno-Beltrán, B., López-Rivas, A., and De la Rosa, M. A. ( 2015 ) Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c. Proc. Natl. Acad. Sci. USA 112, 9908 – 9913
dc.identifier.citedreferenceGonzález-Arzola, K., Díaz-Quintana, A., Rivero-Rodríguez, F., Velázquez-Campoy, A., De la Rosa, M. A., and Díaz-Moreno, I. ( 2017 ) Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c. Nucleic Acids Res. 45, 2150 – 2165
dc.identifier.citedreferenceDíaz-Moreno, I., Velázquez-Cruz, A., Curran-French, S., Díaz-Quintana, A., and De la Rosa, M. A. ( 2018 ) Nuclear cytochrome c: a mitochondrial visitor regulating damaged chromatin dynamics. FEBS Lett. 592, 172 – 178
dc.identifier.citedreferenceJenkins, C. M., Yang, K., Liu, G., Moon, S. H., Dilthey, B. G., and Gross, R. W. ( 2018 ) Cytochrome c is an oxidative stress‐activated plasmalogenase that cleaves plasmenylcholine and plasmenyletha‐nolamine at the sn- 1 vinyl ether linkage. J. Biol. Chem. 293, 8693 – 8709
dc.identifier.citedreferenceLinn, T. C., Pettit, F. H., and Reed, L. J. ( 1969 ) Alpha-keto acid dehydrogenase complexes, X: Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. USA 62, 234 – 241
dc.identifier.citedreferenceCovian, R., and Balaban, R. S. ( 2012 ) Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 303, H940 – H966
dc.identifier.citedreferenceLee, I., Salomon, A. R., Ficarro, S., Mathes, I., Lottspeich, F., Grossman, L. I., and Hüttemann, M. ( 2005 ) cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J. Biol. Chem. 280, 6094 – 6100
dc.identifier.citedreferenceSamavati, L., Lee, I., Mathes, I., Lottspeich, F., and Hüttemann, M. ( 2008 ) Tumor necrosis factor α inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J. Biol. Chem. 283, 21134 – 21144
dc.identifier.citedreferenceMiyazaki, T., Neff, L., Tanaka, S., Home, W. C., and Baron, R. ( 2003 ) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J. Cell Biol. 160, 709 – 718
dc.identifier.citedreferenceBoerner, J. L., Demory, M. L., Silva, C., and Parsons, S. J. ( 2004 ) Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol. Cell. Biol. 24, 7059 – 7071
dc.identifier.citedreferenceDing, Y., Liu, Z., Desai, S., Zhao, Y., Liu, H., Pannell, L. K., Yi, H., Wright, E. R., Owen, L. B., Dean-Colomb, W., Fodstad, O., Lu, J., LeDoux, S. P., Wilson, G. L., and Tan, M. ( 2012 ) Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat. Commun. 3, 1271
dc.identifier.citedreferenceLee, I., Salomon, A. R., Yu, K., Doan, J. W., Grossman, L. I., and Hüttemann, M. ( 2006 ) New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo. Bio-chemistry 45, 9121 – 9128
dc.identifier.citedreferenceDickerson, R., and Timkovich, R. ( 1975 ) Cytochrome c. In The Enzymes ( Boyer, P., ed.), Vol. 11, pp. 397 – 472, Academic Press, New York
dc.identifier.citedreferenceDickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., and Margoliash, E. ( 1971 ) Ferricytochrome c, I: General features of the horse and bonito proteins at 2.8 A resolution. J. Biol. Chem. 246, 1511 – 1535
dc.identifier.citedreferenceYu, T., Wang, X., Purring-Koch, C., Wei, Y., and McLendon, G. L. ( 2001 ) A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1. J. Biol. Chem. 276, 13034 – 13038
dc.identifier.citedreferenceGarcía-Heredia, J. M., Díaz-Quintana, A., Salzano, M., Orzáez, M., Pérez-Payá, E., Teixeira, M., De la Rosa, M. A., and Díaz-Moreno, I. ( 2011 ) Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch. J. Biol. Inorg. Chem. 16, 1155 – 1168
dc.identifier.citedreferenceGuerra-Castellano, A., Díaz-Quintana, A., Pérez-Mejías, G., Elena-Real, C. A., González-Arzola, K., García-Mauriño, S. M., De la Rosa, M. A., and Díaz-Moreno, I. ( 2018 ) Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc. Natl. Acad. Sci. USA 115, 7955 – 7960
dc.identifier.citedreferenceSanderson, T. H., Mahapatra, G., Pecina, P., Ji, Q., Yu, K., Sinkler, C., Varughese, A., Kumar, R., Bukowski, M. J., Tousignant, R. N., Salomon, A. R., Lee, I., and Hüttemann, M. ( 2013 ) Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment. PLoS One 8, e78627
dc.identifier.citedreferenceSanderson, T. H., Kumar, R., Sullivan, J. M., and Krause, G. S. ( 2008 ) Insulin blocks cytochrome c release in the reperfused brain through PI3-Ksignaling and by promoting Bax/Bcl-XL binding. J. Neurochem. 106, 1248 – 1258
dc.identifier.citedreferenceZaidi, S., Hassan, M. I., Islam, A., and Ahmad, F. ( 2014 ) The role of key residues in structure, function, and stability of cytochrome- c. Cell. Mol. Life Sci. 71, 229 – 255
dc.identifier.citedreferenceYu, H., Lee, I., Salomon, A. R., Yu, K., and Hüttemann, M. ( 2008 ) Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration. Biochim. Biophys. Acta 1777, 1066 – 1071
dc.identifier.citedreferenceDe Rocco, D., Cerqua, C., Goffrini, P., Russo, G., Pastore, A., Meloni, F., Nicchia, E., Moraes, C. T., Pecci, A., Salviati, L., and Savoia, A. ( 2014 ) Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics. Biochim. Biophys. Acta 1842, 269 – 274
dc.identifier.citedreferenceMoreno-Beltrán, B., Guerra-Castellano, A., Díaz-Quintana, A., Del Conte, R., García-Mauriño, S. M., Díaz-Moreno, S., González-Arzola, K., Santos-Ocaña, C., Velázquez-Campoy, A., De la Rosa, M. A., Turano, P., and Díaz-Moreno, I. ( 2017 ) Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48. Proc. Natl. Acad. Sci. USA 114, E3041 – E3050
dc.identifier.citedreferenceZhang, H., Huang, H. M., Carson, R. C., Mahmood, J., Thomas, H. M., and Gibson, G. E. ( 2001 ) Assessment of membrane potentials of mitochondrial populations in living cells. Anal. Biochem. 298, 170 – 180
dc.identifier.citedreferenceKapralov, A. A., Yanamala, N., Tyurina, Y. Y., Castro, L., Samhan-Arias, A., Vladimirov, Y. A., Maeda, A., Weitz, A. A., Peterson, J., Mylnikov, D., Demicheli, V., Tortora, V., Klein-Seetharaman, J., Radi, R., and Kagan, V. E. ( 2011 ) Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c /cardiolipin peroxidase complexes. Biochim. Biophys. Acta 1808, 2147 – 2155
dc.identifier.citedreferencePecina, P., Borisenko, G. G., Belikova, N. A., Tyurina, Y. Y., Pecinova, A., Lee, I., Samhan-Arias, A. K., Przyklenk, K., Kagan, V. E., and Hüttemann, M. ( 2010 ) Phosphomimetic substitution of cytochrome C tyrosine 48 decreases respiration and binding to cardiolipin and abolishes ability to trigger downstream caspase activation. Biochemistry 49, 6705 – 6714
dc.identifier.citedreferenceSinkler, C. A., Kalpage, H., Shay, J., Lee, I., Malek, M. H., Grossman, L. I., and Hüttemann, M. ( 2017 ) Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxid. Med. Cell. Longev. 2017, 1534056
dc.identifier.citedreferenceGuerra-Castellano, A., Díaz-Quintana, A., Moreno-Beltrán, B., López-Prados, J., Nieto, P. M., Meister, W., Staffa, J., Teixeira, M., Hildebrandt, P., De la Rosa, M. A., and Díaz-Moreno, I. ( 2015 ) Mimicking tyrosine phosphorylation in human cytochrome c by the evolved tRNA synthetase technique. Chemistry 21, 15004 – 15012
dc.identifier.citedreferenceMorison, I. M., Cramer Bordé, E. M., Cheesman, E. J., Cheong, P. L., Holyoake, A. J., Fichelson, S., Weeks, R. J., Lo, A., Davies, S. M., Wilbanks, S. M., Fagerlund, R. D., Ludgate, M. W., da Silva Tatley, F. M., Coker, M. S., Bockett, N. A., Hughes, G., Pippig, D. A., Smith, M. P., Capron, C., and Ledgerwood, E. C. ( 2008 ) A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat. Genet. 40, 387 – 389
dc.identifier.citedreferenceParakra, R. D., Kleffmann, T., Jameson, G. N. L., and Ledgerwood, E. C. ( 2018 ) The proportion of Met80-sulfoxide dictates peroxidase activity of human cytochrome c. Dalton Trans. 47, 9128 – 9135
dc.identifier.citedreferenceDeacon, O. M., Karsisiotis, A. I., Moreno-Chicano, T., Hough, M. A., Macdonald, C., Blumenschein, T. M. A., Wilson, M. T., Moore, G. R., and Worrall, J. A. R. ( 2017 ) Heightened dynamics of the oxidized Y48H variant of human cytochrome c increases its peroxidatic activity. Biochemistry 56, 6111 – 6124
dc.identifier.citedreferenceMuneeswaran, G., Kartheeswaran, S., Pandiaraj, M., Muthukumar, K., Sankaralingam, M., and Arunachalam, S. ( 2017 ) Investigation of structural dynamics of Thrombocytopenia Cargeeg mutants of human apoptotic cytochrome c: a molecular dynamics simulation approach. Biophys. Chem. 230, 117 – 126
dc.identifier.citedreferenceHojlund, K., Bowen, B. P., Hwang, H., Flynn, C. R., Madireddy, L., Geetha, T., Langlais, P., Meyer, C., Mandarino, L. J., and Yi, Z. ( 2009 ) In vivo phosphoproteome of human skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS. J. Proteome Res. 8, 4954 – 4965
dc.identifier.citedreferenceZhao, X., León, I. R., Bak, S., Mogensen, M., Wrzesinski, K., Hojlund, K., and Jensen, O. N. ( 2011 ) Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol. Cell. Proteomics 10, M110.000299
dc.identifier.citedreferenceHoffman, N. J., Parker, B. L., Chaudhuri, R., Fisher-Wellman, K. H., Kleinert, M., Humphrey, S. J., Yang, P., Holliday, M., Trefely, S., Fazakerley, D. J., Stöckli, J., Burchfield, J. G., Jensen, T. E., Jothi, R., Kiens, B., Wojtaszewski, J. F., Richter, E. A., and James, D. E. ( 2015 ) Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates [published correction appears in Cell Metab. (2015) 22, 948]. Cell Metab. 22, 922 – 935
dc.identifier.citedreferenceMahapatra, G., Varughese, A., Ji, Q., Lee, I., Liu, J., Vaishnav, A., Sinkler, C., Kapralov, A. A., Moraes, C. T., Sanderson, T. H., Stemmler, T. L., Grossman, L. I., Kagan, V. E., Brunzelle, J. S., Salomon, A. R., Edwards, B. F., and Hüttemann, M. ( 2017 ) Phosphorylation of cytochrome c threonine 28 regulates electron transport chain activity in kidney: implications for AMP kinase. J. Biol. Chem. 292, 64 – 79
dc.identifier.citedreferenceGuerra-Castellano, A., Diaz-Moreno, I., Velazquez-Campoy, A., De la Rosa, M. A., and Diaz-Quintana, A. ( 2016 ) Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47. Biochim Biophys Acta 1857, 387 – 395
dc.identifier.citedreferenceLiu, S. S. ( 1999 ) Cooperation of a “reactive oxygen cycle” with the Q cycle and the proton cycle in the respiratory chain: superoxide generating and cycling mechanisms in mitochondria. J. Bioenerg. Biomembr. 31, 367 – 376
dc.identifier.citedreferenceKorshunov, S. S., Skulachev, V. P., and Starkov, A. A. ( 1997 ) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 15 – 18
dc.identifier.citedreferenceRottenberg, H., Covian, R., and Trumpower, B. L. ( 2009 ) Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles. J. Biol. Chem. 284, 19203 – 19210
dc.identifier.citedreferenceWan, B., Doumen, C., Duszynski, J., Salama, G., Vary, T. C., and LaNoue, K. F. ( 1993 ) Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am. J. Physiol. 265, H453 – H460
dc.identifier.citedreferenceBrand, M. D., and Felber, S. M. ( 1984 ) Membrane potential of mitochondria in intact lymphocytes during early mitogenic stimulation. Biochem. J. 217, 453 – 459
dc.identifier.citedreferenceBackus, M., Piwnica-Worms, D., Hockett, D., Kronauge, J., Lieberman, M., Ingram, P., and LeFurgey, A. ( 1993 ) Microprobe analysis of Tc-MIBI in heart cells: calculation of mitochondrial membrane potential. Am. J. Physiol. 265, C178 – C187
dc.identifier.citedreferenceKaim, G., and Dimroth, P. ( 1999 ) ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J. 18, 4118 – 4127
dc.identifier.citedreferenceDalmonte, M. E., Forte, E., Genova, M. L., Giuffrè, A., Sarti, P., and Lenaz, G. ( 2009 ) Control of respiration by cytochrome c oxidase in intact cells: role of the membrane potential. J. Biol. Chem. 284, 32331 – 32335
dc.identifier.citedreferencePiccoli, C., Scrima, R., Boffoli, D., and Capitanio, N. ( 2006 ) Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem. J. 396, 573 – 583
dc.identifier.citedreferenceVillani, G., and Attardi, G. ( 1997 ) In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc. Natl. Acad. Sci. USA 94, 1166 – 1171
dc.identifier.citedreferenceVillani, G., Greco, M., Papa, S., and Attardi, G. ( 1998 ) Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J. Biol. Chem. 273, 31829 – 31836
dc.identifier.citedreferenceKunz, W. S., Kudin, A., Vielhaber, S., Elger, C. E., Attardi, G., and Villani, G. ( 2000 ) Flux control of cytochrome c oxidase in human skeletal muscle. J. Biol. Chem. 275, 27741 – 27745
dc.identifier.citedreferenceEl-Zayadi, A. R. ( 2006 ) Heavy smoking and liver. World J. Gastroenterol. 12, 6098 – 6101
dc.identifier.citedreferencePaik, W. K., Paik, D. C., and Kim, S. ( 2007 ) Historical review: the field of protein methylation. Trends Biochem. Sci. 32, 146 – 152
dc.identifier.citedreferenceBremang, M., Cuomo, A., Agresta, A. M., Stugiewicz, M., Spadotto, V., and Bonaldi, T. ( 2013 ) Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome. Mol. Biosyst. 9, 2231 – 2247
dc.identifier.citedreferenceHosp, F., Lassowskat, I., Santoro, V., De Vleesschauwer, D., Fliegner, D., Redestig, H., Mann, M., Christian, S., Hannah, M. A., and Finkemeier, I. ( 2017 ) Lysine acetylation in mitochondria: from inventory to function. Mitochondrion 33, 58 – 71
dc.identifier.citedreferenceHolzschu, D., Principio, L., Conklin, K. T., Hickey, D. R., Short, J., Rao, R., McLendon, G., and Sherman, F. ( 1987 ) Replacement of the invariant lysine 77 by arginine in yeast iso-l-cytochrome c results in enhanced and normal activities in vitro and in vivo. J. Biol. Chem. 262, 7125 – 7131
dc.identifier.citedreferencePaik, W. K., Cho, Y. B., Frost, B., and Kim, S. ( 1989 ) Cytochrome c methylation. Biochem. Cell Biol. 67, 602 – 611
dc.identifier.citedreferencePolevoda, B., Martzen, M. R., Das, B., Phizicky, E. M., and Sherman, F. ( 2000 ) Cytochrome c methyltransferase, Ctm1p, of yeast. J. Biol. Chem. 275, 20508 – 20513
dc.identifier.citedreferencePark, K. S., Frost, B., Tuck, M., Ho, L. L., Kim, S., and Paik, W. K. ( 1987 ) Enzymatic methylation of in vitro synthesized apocytochrome c enhances its transport into mitochondria. J. Biol. Chem. 262, 14702 – 14708
dc.identifier.citedreferencePolastro, E., Schneck, A. G., Leonis, J., Kim, S., and Paik, W. K. ( 1978 ) Cytochrome c methylation. Int. J. Biochem. 9, 795 – 801
dc.identifier.citedreferenceWinter, D. L., Abeygunawardena, D., Hart-Smith, G., Erce, M. A., and Wilkins, M. R. ( 2015 ) Lysine methylation modulates the protein-protein interactions of yeast cytochrome C Cyc1p. Proteomics 15, 2166 – 2176
dc.identifier.citedreferenceKluck, R. M., Ellerby, L. M., Ellerby, H. M., Naiem, S., Yaffe, M. P., Margoliash, E., Bredesen, D., Mauk, A. G., Sherman, F., and Newmeyer, D. D. ( 2000 ) Determinants of cytochrome c proapoptotic activity: the role of lysine 72 trimethylation. J. Biol. Chem. 275, 16127 – 16133
dc.identifier.citedreferenceFarooqui, J., DiMaria, P., Kim, S., and Paik, W. K. ( 1981 ) Effect of methylation on the stability of cytochrome c of Saccharomyces cerevisiae in vivo. J. Biol. Chem. 256, 5041 – 5045
dc.identifier.citedreferenceFrost, B., Park, K. S., Kim, S., and Paik, W. K. ( 1989 ) Effect of enzymatic methylation of apocytochrome c on holocytochrome c formation and proteolysis. Int. J. Biochem. 21, 1407 – 1414
dc.identifier.citedreferenceBrems, D. N., and Stellwagen, E. ( 1981 ) The effect of methylation on cytochrome c fragment complementation. J. Biol. Chem. 256, 11688 – 11690
dc.identifier.citedreferenceKim, C. S., Kueppers, F., Dimaria, P., Farooqui, J., Kim, S., and Paik, W. K. ( 1980 ) Enzymatic trimethylation of residue-72 lysine in cytochrome c: effect on the total structure. Biochim. Biophys. Acta 622, 144 – 150
dc.identifier.citedreferencePollock, W. B., Rosell, F. I., Twitchett, M. B., Dumont, M. E., and Mauk, A. G. ( 1998 ) Bacterial expression of a mitochondrial cytochrome c: trimethylation of lys72 in yeast iso-l-cytochrome c and the alkaline conformational transition. Biochemistry 37, 6124 – 6131
dc.identifier.citedreferenceCherney, M. M., Junior C. C., and Bowler, B. E. ( 2013 ) Mutation of trimethyllysine 72 to alanine enhances His79-heme-mediated dynamics of iso-l-cytochrome c. Biochemistry 52, 837 – 846
dc.identifier.citedreferenceAnderson, K. A., and Hirschey, M. D. ( 2012 ) Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 52, 23 – 35
dc.identifier.citedreferenceHebert, A. S., Dittenhafer-Reed, K. E., Yu, W., Bailey, D. J., Selen, E. S., Boersma, M. D., Carson J. J., Tonelli, M., Balloon, A. J., Higbee, A. J., Westphall, M. S., Pagliarini, D. J., Prolla, T. A., Assadi-Porter, F., Roy, S., Denu, J. M., and Coon, J. J. ( 2013 ) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49, 186 – 199
dc.identifier.citedreferenceKönig, A. C., Hard, M., Boersema, P. J., Mann, M., and Finkemeier, I. ( 2014 ) The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion 19, 252 – 260
dc.identifier.citedreferenceSmith-Hammond, C. L., Hoyos, E., and Miernyk, J. A. ( 2014 ) The pea seedling mitochondrial Nε-lysine acetylome. Mitochondrion 19, 154 – 165
dc.identifier.citedreferenceBasova, L. V., Kurnikov, I. V., Wang, L., Ritov, V. B., Belikova, N. A., Vlasova, I. I., Pacheco, A. A., Winnica, D. E., Peterson, J., Bayir, H., Waldeck, D. H., and Kagan, V. E. ( 2007 ) Cardiolipin switch in mitochondria: shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry 46, 3423 – 3434
dc.identifier.citedreferenceCammack, R. ( 1995 ) Redox states and potentials. In Bioenergetics: A Practical Approach ( Brown, G. C., and Cooper, C. E., ed.), pp. 93 – 95, IRL Press, Oxford, United Kingdom
dc.identifier.citedreferenceNicholls, D. G., and Ferguson, S. J. ( 1992 ) Bioenergetics 2, Academic Press Limited, London
dc.identifier.citedreferenceCapdevila, D. A., Oviedo Rouco, S., Tomasina, F., Tortora, V., Demicheli, V., Radi, R., and Murgida, D. H. ( 2015 ) Active site structure and peroxidase activity of oxidatively modified cytochrome especies in complexes with cardiolipin. Biochemistry 54, 7491 – 7504
dc.identifier.citedreferenceVladimirov, Y. A., Proskurnina, E. V., Izmailov, D. Y., Novikov, A. A., Brusnichkin, A. V., Osipov, A. N., and Kagan, V. E. ( 2006 ) Cardiolipin activates cytochrome c peroxidase activity since it facilitates H(2)O(2) access to heme. Biochemistry (Mosc.) 71, 998 – 1005
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.