Show simple item record

Evidence for anti‐inflammatory effects of C5a on the innate IL‐17A/IL‐23 axis

dc.contributor.authorBosmann, Markus
dc.contributor.authorSarma, J. Vidya
dc.contributor.authorAtefi, Gelareh
dc.contributor.authorZetoune, Firas S.
dc.contributor.authorWard, Peter A.
dc.date.accessioned2020-03-17T18:34:36Z
dc.date.available2020-03-17T18:34:36Z
dc.date.issued2012-04
dc.identifier.citationBosmann, Markus; Sarma, J. Vidya; Atefi, Gelareh; Zetoune, Firas S.; Ward, Peter A. (2012). "Evidence for anti‐inflammatory effects of C5a on the innate IL‐17A/IL‐23 axis." The FASEB Journal 26(4): 1640-1651.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154509
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherendotoxic shock
dc.subject.otherC5L2
dc.subject.otherinterleukin‐10
dc.subject.othermacrophages
dc.titleEvidence for anti‐inflammatory effects of C5a on the innate IL‐17A/IL‐23 axis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154509/1/fsb2026004027.pdf
dc.identifier.doi10.1096/fj.11-199216
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceRiedemann, N. C., Guo, R. F., Hollmann, T. J., Gao, H., Neff, T. A., Reuben, J. S., Speyer, C. L., Sarma, J. V., Wetsel, R. A., Zetoune, F. S., and Ward, P. A. ( 2004 ) Regulatory role of C5a in LPS‐induced IL‐6 production by neutrophils during sepsis. FASEB J. 18, 370 – 372
dc.identifier.citedreferenceBosmann, M., Patel, V. R., Russkamp, N. F., Pache, F., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2011 ) MyD88‐dependent production of IL‐17F is modulated by the anaphylatoxin C5a via the Akt signaling pathway. FASEB J. 25, 4222 – 4232
dc.identifier.citedreferenceBosmann, M., Russkamp, N. F., Patel, V. R., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2011 ) The outcome of polymicrobial sepsis is independent of T and B cells. Shock 36, 396 – 401
dc.identifier.citedreferenceBedoret, D., Wallemacq, H., Marichal, T., Desmet, C., Quesada Calvo, F., Henry, E., Closset, R., Dewals, B., Thielen, C., Gustin, P., de Leval, L., Van Rooijen, N., Le Moine, A., Vanderplasschen, A., Cataldo, D., Drion, P. V., Moser, M., Lekeux, P., and Bureau, F. ( 2009 ) Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 119, 3723 – 3738
dc.identifier.citedreferenceTidball, J. G., and Wehling‐Henricks, M. ( 2007 ) Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J. Physiol. 578, 327 – 336
dc.identifier.citedreferenceGuo, R. F., Sun, L., Gao, H., Shi, K. X., Rittirsch, D., Sarma, V. J., Zetoune, F. S., and Ward, P. A. ( 2006 ) In vivo regulation of neutrophil apoptosis by C5a during sepsis. J. Leukoc. Biol. 80, 1575 – 1583
dc.identifier.citedreferenceTaylor, F. B., Jr. ( 2001 ) Staging of the pathophysiologic responses of the primate microvasculature to Escherichia coli and endotoxin: examination of the elements of the compensated response and their links to the corresponding uncompensated lethal variants. Crit. Care Med. 29, S78 – 89
dc.identifier.citedreferenceTaylor, F. B., Jr., Hack, E., and Lupu, F. ( 2006 ) Observations on complement activity in the two‐stage inflammatory/hemostatic response in the baboon and human models of E. coli sepsis and endotoxemia. Adv. Exp. Med. Biol. 586, 203 – 216
dc.identifier.citedreferenceHollmann, T. J., Mueller‐Ortiz, S. L., Braun, M. C., and Wetsel, R. A. ( 2008 ) Disruption of the C5a receptor gene increases resistance to acute Gram‐negative bacteremia and endotoxic shock: opposing roles of C3a and C5a. Mol. Immunol. 45, 1907 – 1915
dc.identifier.citedreferenceHawlisch, H., Belkaid, Y., Baelder, R., Hildeman, D., Gerard, C., and Kohl, J. ( 2005 ) C5a negatively regulates Toll‐like receptor 4‐induced immune responses. Immunity 22, 415 – 426
dc.identifier.citedreferenceWittmann, M., Zwirner, J., Larsson, V. A., Kirchhoff, K., Begemann, G., Kapp, A., Gotze, O., and Werfel, T. ( 1999 ) C5a suppresses the production of IL‐12 by IFN‐gamma‐primed and lipopolysaccharide‐challenged human monocytes. J. Immunol. 162, 6763 – 6769
dc.identifier.citedreferenceGaffen, S. L. ( 2009 ) Structure and signalling in the IL‐17 receptor family. Nat. Rev. Immunol. 9, 556 – 567
dc.identifier.citedreferenceMilner, J. D., Brenchley, J. M., Laurence, A., Freeman, A. F., Hill, B. J., Elias, K. M., Kanno, Y., Spalding, C., Elloumi, H. Z., Paulson, M. L., Davis, J., Hsu, A., Asher, A. I., O’Shea, J., Holland, S. M., Paul, W. E., and Douek, D. C. ( 2008 ) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper‐IgE syndrome. Nature 452, 773 – 776
dc.identifier.citedreferenceRamos, T. N., Wohler, J. E., and Barnum, S. R. ( 2009 ) Deletion of both the C3a and C5a receptors fails to protect against experimental autoimmune encephalomyelitis. Neurosci. Lett. 467, 234 – 236
dc.identifier.citedreferenceHashimoto, M., Hirota, K., Yoshitomi, H., Maeda, S., Teradaira, S., Akizuki, S., Prieto‐Martin, P., Nomura, T., Sakaguchi, N., Kohl, J., Heyman, B., Takahashi, M., Fujita, T., Mimori, T., and Sakaguchi, S. ( 2010 ) Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J. Exp. Med. 207, 1135 – 1143
dc.identifier.citedreferenceReiman, R., Gerard, C., Campbell, I. L., and Barnum, S. R. ( 2002 ) Disruption of the C5a receptor gene fails to protect against experimental allergic encephalomyelitis. Eur. J. Immunol. 32, 1157 – 1163
dc.identifier.citedreferenceLiu, J., Lin, F., Strainic, M. G., An, F., Miller, R. H., Altuntas, C. Z., Heeger, P. S., Tuohy, V. K., and Medof, M. E. ( 2008 ) IFN‐gamma and IL‐17 production in experimental autoimmune encephalomyelitis depends on local APC‐T cell complement production. J. Immunol. 180, 5882 – 5889
dc.identifier.citedreferenceKohl, J., Baelder, R., Lewkowich, I. P., Pandey, M. K., Hawlisch, H., Wang, L., Best, J., Herman, N. S., Sproles, A. A., Zwirner, J., Whitsett, J. A., Gerard, C., Sfyroera, G., Lambris, J. D., and Wills‐Karp, M. ( 2006 ) A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J. Clin. Invest. 116, 783 – 796
dc.identifier.citedreferenceZhang, X., Kimura, Y., Fang, C., Zhou, L., Sfyroera, G., Lambris, J. D., Wetsel, R. A., Miwa, T., and Song, W.‐C. ( 2007 ) Regulation of Toll‐like receptor‐mediated inflammatory response by complement in vivo. Blood 110, 228 – 236
dc.identifier.citedreferenceLalli, P. N., Strainic, M. G., Yang, M., Lin, F., Medof, M. E., and Heeger, P. S. ( 2008 ) Locally produced C5a binds to T cell‐expressed C5aR to enhance effector T‐cell expansion by limiting antigen‐induced apoptosis. Blood 112, 1759 – 1766
dc.identifier.citedreferenceFang, C., Zhang, X., Miwa, T., and Song, W.‐C. ( 2009 ) Complement promotes the development of inflammatory T‐helper 17 cells through synergistic interaction with Toll‐like receptor signaling and interleukin‐6 production. Blood 114, 1005 – 1015
dc.identifier.citedreferenceLajoie, S., Lewkowich, I. P., Suzuki, Y., Clark, J. R., Sproles, A. A., Dienger, K., Budelsky, A. L., and Wills‐Karp, M. ( 2010 ) Complement‐mediated regulation of the IL‐17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat. Immunol. 11, 928 – 935
dc.identifier.citedreferenceWeaver, D. J., Reis, E. S., Pandey, M. K., Kohl, G., Harris, N., Gerard, C., and Kohl, J. ( 2010 ) C5a receptor‐deficient dendritic cells promote induction of Treg and Th17 cells. Eur. J. Immunol. 40, 710 – 721
dc.identifier.citedreferenceRicklin, D., Hajishengallis, G., Yang, K., and Lambris, J. D. ( 2010 ) Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785 – 797
dc.identifier.citedreferencePeerschke, E. I., Yin, W., and Ghebrehiwet, B. ( 2010 ) Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol. Immunol. 47, 2170 – 2175
dc.identifier.citedreferenceGuo, R. F., and Ward, P. A. ( 2005 ) Role of C5a in inflammatory responses. Annu. Rev. Immunol. 23, 821 – 852
dc.identifier.citedreferenceOhno, M., Hirata, T., Enomoto, M., Araki, T., Ishimaru, H., and Takahashi, T. A. ( 2000 ) A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol. Immunol. 37, 407 – 412
dc.identifier.citedreferenceAtefi, G., Zetoune, F. S., Herron, T. J., Jalife, J., Bosmann, M., Al‐Aref, R., Sarma, J. V., and Ward, P. A. ( 2011 ) Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB J. 25, 2500 – 2508
dc.identifier.citedreferenceGerard, C., and Gerard, N. P. ( 1994 ) C5A anaphylatoxin and its seven transmembrane‐segment receptor. Annu. Rev. Immunol. 12, 775 – 808
dc.identifier.citedreferenceGerard, N. P., and Gerard, C. ( 1991 ) The chemotactic receptor for human C5a anaphylatoxin. Nature 349, 614 – 617
dc.identifier.citedreferenceChen, N. J., Mirtsos, C., Suh, D., Lu, Y. C., Lin, W. J., McKerlie, C., Lee, T., Baribault, H., Tian, H., and Yeh, W. C. ( 2007 ) C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203 – 207
dc.identifier.citedreferenceGerard, N. P., Lu, B., Liu, P., Craig, S., Fujiwara, Y., Okinaga, S., and Gerard, C. ( 2005 ) An anti‐inflammatory function for the complement anaphylatoxin C5a‐binding protein, C5L2. J. Biol. Chem. 280, 39677 – 39680
dc.identifier.citedreferenceGao, H., Neff, T. A., Guo, R.‐F., Speyer, C. L., Sarma, J. V., Tomlins, S., Man, Y., Riedemann, N. C., Hoesel, L. M., Younkin, E., Zetoune, F. S., and Ward, P. A. ( 2005 ) Evidence for a functional role of the second C5a receptor C5L2. FASEB J. 19, 1003 – 1005
dc.identifier.citedreferenceCzermak, B. J., Sarma, V., Pierson, C. L., Warner, R. L., Huber‐Lang, M., Bless, N. M., Schmal, H., Friedl, H. P., and Ward, P. A. ( 1999 ) Protective effects of C5a blockade in sepsis. Nat. Med. 5, 788 – 792
dc.identifier.citedreferenceRittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huber‐Lang, M., Mackay, C. R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Kohl, J., Gerard, C., Sarma, J. V., and Ward, P. A. ( 2008 ) Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551 – 557
dc.identifier.citedreferenceRiedemann, N. C., Guo, R. F., Bernacki, K. D., Reuben, J. S., Laudes, I. J., Neff, T. A., Gao, H., Speyer, C., Sarma, V. J., Zetoune, F. S., and Ward, P. A. ( 2003 ) Regulation by C5a of neutrophil activation during sepsis. Immunity 19, 193 – 202
dc.identifier.citedreferenceMiossec, P., Korn, T., and Kuchroo, V. K. ( 2009 ) Interleukin‐17 and type 17 helper T cells. New Engl. J. Med. 361, 888 – 898
dc.identifier.citedreferenceFossiez, F., Djossou, O., Chomarat, P., Flores‐Romo, L., Ait‐Yahia, S., Maat, C., Pin, J. J., Garrone, P., Garcia, E., Saeland, S., Blanchard, D., Gaillard, C., Das Mahapatra, B., Rouvier, E., Golstein, P., Banchereau, J., and Lebecque, S. ( 1996 ) T cell interleukin‐17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. [see comment]. J. Exp. Med. 183, 2593 – 2603
dc.identifier.citedreferenceCua, D. J., and Tato, C. M. ( 2010 ) Innate IL‐17‐producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479 – 489
dc.identifier.citedreferenceWilson, R. H., Whitehead, G. S., Nakano, H., Free, M. E., Kolls, J. K., and Cook, D. N. ( 2009 ) Allergic sensitization through the airway primes Th17‐dependent neutrophilia and airway hyper‐responsiveness. Am. J. Respir. Crit. Care Med. 180, 720 – 730
dc.identifier.citedreferenceMurphy, C. A., Langrish, C. L., Chen, Y., Blumenschein, W., McClanahan, T., Kastelein, R. A., Sedgwick, J. D., and Cua, D.J. ( 2003 ) Divergent pro‐ and anti‐inflammatory roles for IL‐23 and IL‐12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951 – 1957
dc.identifier.citedreferenceLangrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., Sedgwick, J. D., McClanahan, T., Kastelein, R. A., and Cua, D. J. ( 2005 ) IL‐23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233 – 240
dc.identifier.citedreferenceMangan, P. R., Harrington, L. E., O’Quinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., Hatton, R. D., Wahl, S. M., Schoeb, T. R., and Weaver, C. T. ( 2006 ) Transforming growth factor‐beta induces development of the T(H)17 lineage. Nature 441, 231 – 234
dc.identifier.citedreferenceMcGeachy, M. J., Bak‐Jensen, K. S., Chen, Y., Tato, C. M., Blumenschein, W., McClanahan, T., and Cua, D. J. ( 2007 ) TGF‐beta and IL‐6 drive the production of IL‐17 and IL‐10 by T cells and restrain T(H)‐17 cell‐mediated pathology. Nat. Immunol. 8, 1390 – 1397
dc.identifier.citedreferenceIvanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J., and Littman, D. R. ( 2006 ) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL‐17+ T helper cells. Cell 126, 1121 – 1133
dc.identifier.citedreferenceLiu, X. K., Clements, J. L., and Gaffen, S. L. ( 2005 ) Signaling through the murine T cell receptor induces IL‐17 production in the absence of costimulation, IL‐23 or dendritic cells. Mol. Cells 20, 339 – 347
dc.identifier.citedreferenceTakahashi, N., Vanlaere, I., de Rycke, R., Cauwels, A., Joosten, L. A., Lubberts, E., van den Berg, W. B., and Libert, C. ( 2008 ) IL‐17 produced by Paneth cells drives TNF‐induced shock. J. Exp. Med. 205, 1755 – 1761
dc.identifier.citedreferenceFlierl, M. A., Rittirsch, D., Gao, H., Hoesel, L. M., Nadeau, B. A., Day, D. E., Zetoune, F. S., Sarma, J. V., Huber‐Lang, M. S., Ferrara, J. L., and Ward, P. A. ( 2008 ) Adverse functions of IL‐17A in experimental sepsis. FASEB J. 22, 2198 – 2205
dc.identifier.citedreferenceGu, Y., Yang, J., Ouyang, X., Liu, W., Li, H., Bromberg, J., Chen, S. H., Mayer, L., Unkeless, J. C., and Xiong, H. ( 2008 ) Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells. Eur. J. Immunol. 38, 1807 – 1813
dc.identifier.citedreferenceDa Silva, C. A., Hartl, D., Liu, W., Lee, C. G., and Elias, J. A. ( 2008 ) TLR‐2 and IL‐17A in chitin‐induced macrophage activation and acute inflammation. J. Immunol. 181, 4279 – 4286
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.