Show simple item record

Effects of Sea Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric Chemistry: Implications for Radiative Forcing

dc.contributor.authorHorowitz, Hannah M.
dc.contributor.authorHolmes, Christopher
dc.contributor.authorWright, Alicia
dc.contributor.authorSherwen, Tomás
dc.contributor.authorWang, Xuan
dc.contributor.authorEvans, Mat
dc.contributor.authorHuang, Jiayue
dc.contributor.authorJaeglé, Lyatt
dc.contributor.authorChen, Qianjie
dc.contributor.authorZhai, Shuting
dc.contributor.authorAlexander, Becky
dc.date.accessioned2020-03-17T18:34:48Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-03-17T18:34:48Z
dc.date.issued2020-02-28
dc.identifier.citationHorowitz, Hannah M.; Holmes, Christopher; Wright, Alicia; Sherwen, Tomás ; Wang, Xuan; Evans, Mat; Huang, Jiayue; Jaeglé, Lyatt ; Chen, Qianjie; Zhai, Shuting; Alexander, Becky (2020). "Effects of Sea Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric Chemistry: Implications for Radiative Forcing." Geophysical Research Letters 47(4): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/154513
dc.description.abstractMarine cloud brightening (MCB) is proposed to offset global warming by emitting sea salt aerosols to the tropical marine boundary layer, which increases aerosol and cloud albedo. Sea salt aerosol is the main source of tropospheric reactive chlorine (Cly) and bromine (Bry). The effects of additional sea salt on atmospheric chemistry have not been explored. We simulate sea salt aerosol injections for MCB under two scenarios (212–569 Tg/a) in the GEOS‐Chem global chemical transport model, only considering their impacts as a halogen source. Globally, tropospheric Cly and Bry increase (20–40%), leading to decreased ozone (−3 to −6%). Consequently, OH decreases (−3 to −5%), which increases the methane lifetime (3–6%). Our results suggest that the chemistry of the additional sea salt leads to minor total radiative forcing compared to that of the sea salt aerosol itself (~2%) but may have potential implications for surface ozone pollution in tropical coastal regions.Plain Language SummaryIn light of global warming, hypothetical geoengineering methods have been proposed to try to counteract rising temperatures. One involves spraying sea salt particles into the air above the oceans in the tropics. This would reduce temperatures by reflecting sunlight away from the Earth. Sea salt particles can also release halogens to the air. Their resulting chemical reactions affect the amount of ozone and methane, both greenhouse gases, which may further impact temperatures. We investigate this for the first time using a computer model of the atmosphere and its chemistry. We find that additional sea salt for geoengineering would reduce ozone, especially at the surface where it is an air pollutant, while increasing methane. Overall, these results suggest that the net effect of the sea salt chemistry on the energy balance of the Earth is near zero, but it may have potential implications for air quality.Key PointsSea salt aerosol emissions for Marine Cloud Brightening geoengineering are implemented in a global chemical transport modelThis leads to changes in global tropospheric Bry and Cly (+20 to 40%), ozone (−3 to −6%), OH (−2 to −4%), and methane lifetime (+3 to 6%)Chemistry of the added sea salt leads to minor total radiative forcing (−20 to −50 mW/m2) but may have implications for ozone pollution
dc.publisherWiley Periodicals, Inc.
dc.publisherNatl. Res. Lab
dc.subject.otheratmospheric chemistry
dc.subject.othermarine cloud brightening
dc.subject.othergeoengineering
dc.subject.otherreactive halogens
dc.subject.othersea salt aerosols
dc.titleEffects of Sea Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric Chemistry: Implications for Radiative Forcing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154513/1/grl60182.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154513/2/grl60182_am.pdf
dc.identifier.doi10.1029/2019GL085838
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceRead, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V., Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C., Mendes, L., McQuaid, J., Oetjen, H., Saiz‐Lopez, A., Pilling, M. J., & Plane, J. M. ( 2008 ). Extensive halogen‐mediated ozone destruction over the tropical Atlantic Ocean. Nature, 453 ( 7199 ), 1232 – 1235. https://doi.org/10.1038/nature07035
dc.identifier.citedreferenceJaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., & Lin, J. T. ( 2011 ). Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmospheric Chemistry and Physics, 11 ( 7 ), 3137 – 3157. https://doi.org/10.5194/acp‐11‐3137‐2011
dc.identifier.citedreferenceJones, A., Haywood, J., & Boucher, O. ( 2009 ). Climate impacts of geoengineering marine stratocumulus clouds. Journal of Geophysical Research, 114, D10106. https://doi.org/10.1029/2008JD011450
dc.identifier.citedreferenceJones, A., & Haywood, J. M. ( 2012 ). Sea‐spray geoengineering in the HadGEM2‐ES earth‐system model: Radiative impact and climate response. Atmospheric Chemistry and Physics, 12 ( 22 ), 10,887 – 10,898. https://doi.org/10.5194/acp‐12‐10887‐2012
dc.identifier.citedreferenceKim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Jimenez, J. L., Campuzano‐Jost, P., & Froyd, K. D. ( 2015 ). Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS‐Chem chemical transport model. Atmospheric Chemistry and Physics, 15 ( 18 ), 10,411 – 10,433. https://doi.org/10.5194/acp‐15‐10411‐2015
dc.identifier.citedreferenceKravitz, B., Forster, P. M., Jones, A., Robock, A., Alterskjaer, K., Boucher, O., Jenkins, A. K. L., Korhonen, H., Kristjánsson, J. E., Muri, H., Niemeier, U., Partanen, A. I., Rasch, P. J., Wang, H., & Watanabe, S. ( 2013 ). Sea spray geoengineering experiments in the Geoengineering Model Intercomparison Project (GeoMIP): Experimental design and preliminary results. Journal of Geophysical Research: Atmospheres, 118, 11,175 – 11,186. https://doi.org/10.1002/jgrd.50856
dc.identifier.citedreferenceLatham, J. ( 1990 ). Control of global warming? Nature, 347 ( 6291 ), 339 – 340. https://doi.org/10.1038/347339b0
dc.identifier.citedreferenceLatham, J. ( 2002 ). Amelioration of global warming by controlled enhancement of the albedo and longevity of low‐level maritime clouds. Atmospheric Science Letters, 3 ( 2‐4 ), 52 – 58. https://doi.org/10.1006/asle.2002.0048
dc.identifier.citedreferenceLiu, H. Y., Jacob, D. J., Bey, I., & Yantosca, R. M. ( 2001 ). Constraints from Pb‐210 and Be‐7 on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields. Journal of Geophysical Research, 106 ( D11 ), 12,109 – 12,128. https://doi.org/10.1029/2000JD900839
dc.identifier.citedreferenceMao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H., Clair, J. M. S., Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P. O., Cubison, M. J., Jimenez, J. L., Fried, A., Weibring, P., Walega, J. G., Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen, G., Crawford, J. H., McNaughton, C., Clarke, A. D., Jaeglé, L., Fisher, J. A., Yantosca, R. M., le Sager, P., & Carouge, C. ( 2010 ). Chemistry of hydrogen oxide radicals (HO x ) in the Arctic troposphere in spring. Atmospheric Chemistry and Physics, 10 ( 13 ), 5823 – 5838. https://doi.org/10.5194/acp‐10‐5823‐2010
dc.identifier.citedreferenceMartin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., & Ginoux, P. ( 2003 ). Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. Journal of Geophysical Research, 108 ( D3 ), 4097. https://doi.org/10.1029/2002JD002622
dc.identifier.citedreferenceMontzka, S. A., Krol, M., Dlugokencky, E., Hall, B., Jockel, P., & Lelieveld, J. ( 2011 ). Small interannual variability of global atmospheric hydroxyl. Science, 331 ( 6013 ), 67 – 69. https://doi.org/10.1126/science.1197640
dc.identifier.citedreferenceMyhre, G., Shindell, D., Breon, F. M., Collins, W., Fuglestvedt, J., & Huang, J. ( 2013 ). Anthropogenic and natural radiative forcing Rep. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceOeste, F. D., de Richter, R., Ming, T. Z., & Caillol, S. ( 2017 ). Climate engineering by mimicking natural dust climate control: The iron salt aerosol method. Earth System Dynamics, 8 ( 1 ), 1 – 54. https://doi.org/10.5194/esd‐8‐1‐2017
dc.identifier.citedreferenceParrella, J. P., Jacob, D. J., Liang, Q., Zhang, Y., Mickley, L. J., Miller, B., Evans, M. J., Yang, X., Pyle, J. A., Theys, N., & van Roozendael, M. ( 2012 ). Tropospheric bromine chemistry: Implications for present and pre‐industrial ozone and mercury. Atmospheric Chemistry and Physics, 12 ( 15 ), 6723 – 6740. https://doi.org/10.5194/acp‐12‐6723‐2012
dc.identifier.citedreferencePartanen, A. I., Kokkola, H., Romakkaniemi, S., Kerminen, V. M., Lehtinen, K. E. J., Bergman, T., Arola, A., & Korhonen, H. ( 2012 ). Direct and indirect effects of sea spray geoengineering and the role of injected particle size. Journal of Geophysical Research, 117, D02203. https://doi.org/10.1029/2011JD016428
dc.identifier.citedreferenceJacob, D. J. ( 2000 ). Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34 ( 12‐14 ), 2131 – 2159. https://doi.org/10.1016/s1352‐2310(99)00462‐8
dc.identifier.citedreferenceRigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D., O’Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J., Simmonds, P. G., Salameh, P. K., Harth, C. M., Mühle, J., Weiss, R. F., Fraser, P. J., Steele, L. P., Krummel, P. B., McCulloch, A., & Park, S. ( 2017 ). Role of atmospheric oxidation in recent methane growth. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 21 ), 5373 – 5377. https://doi.org/10.1073/pnas.1616426114
dc.identifier.citedreferenceSalter, S., Sortino, G., & Latham, J. ( 2008 ). Sea‐going hardware for the cloud albedo method of reversing global warming. Philosophical Transactions of the Royal Society a‐Mathematical Physical and Engineering Sciences, 366 ( 1882 ), 3989 – 4006. https://doi.org/10.1098/rsta.2008.0136
dc.identifier.citedreferenceSchmidt, J. A., Jacob, D. J., Horowitz, H. M., Hu, L., Sherwen, T., Evans, M. J., Liang, Q., Suleiman, R. M., Oram, D. E., le Breton, M., Percival, C. J., Wang, S., Dix, B., & Volkamer, R. ( 2016 ). Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury. Journal of Geophysical Research: Atmospheres, 121, 11,819 – 11,835. https://doi.org/10.1002/2015JD024229
dc.identifier.citedreferenceSherwen, T., Evans, M. J., Carpenter, L. J., Andrews, S. J., Lidster, R. T., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz‐Lopez, A., Prados‐Roman, C., Mahajan, A. S., & Ordóñez, C. ( 2016 ). Iodine’s impact on tropospheric oxidants: A global model study in GEOS‐Chem. Atmospheric Chemistry and Physics, 16, 1161 – 1186. https://doi.org/10.5194/acp‐16‐1161‐2016
dc.identifier.citedreferenceSherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob, D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz‐Lopez, A., Prados‐Roman, C., Mahajan, A. S., & Ordóñez, C. ( 2016 ). Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS‐Chem. Atmospheric Chemistry and Physics, 16, 12,239 – 12,271. https://doi.org/10.5194/acp‐16‐12239‐2016
dc.identifier.citedreferenceSimpson, W. R., Brown, S. S., Saiz‐Lopez, A., Thornton, J. A., & von Glasow, R. ( 2015 ). Tropospheric halogen chemistry: Sources, cycling, and impacts. Chemical Reviews, 115 ( 10 ), 4035 – 4062. https://doi.org/10.1021/cr5006638
dc.identifier.citedreferenceTurner, A. J., Frankenbergb, C., Wennberg, P. O., & Jacob, D. J. ( 2017 ). Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 21 ), 5367 – 5372. https://doi.org/10.1073/pnas.1616020114
dc.identifier.citedreferenceVogt, R., Crutzen, P. J., & Sander, R. ( 1996 ). A mechanism for halogen release from sea‐salt aerosol in the remote marine boundary layer. Nature, 383 ( 6598 ), 327 – 330. https://doi.org/10.1038/383327a0
dc.identifier.citedreferenceWang, H., Rasch, P. J., & Feingold, G. ( 2011 ). Manipulating marine stratocumulus cloud amount and albedo: A process‐modelling study of aerosol‐cloud‐precipitation interactions in response to injection of cloud condensation nuclei. Atmospheric Chemistry and Physics, 11, 4237 – 4249. https://doi.org/10.5194/acp‐11‐4237‐2011
dc.identifier.citedreferenceWang, H. L., & Feingold, G. ( 2009 ). Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics of the boundary region between open and closed cells. Journal of the Atmospheric Sciences, 66, 3257 – 3275.
dc.identifier.citedreferenceWang, Q. Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P., Moteki, N., Marais, E. A., Ge, C., Wang, J., & Barrett, S. R. H. ( 2014 ). Global budget and radiative forcing of black carbon aerosol: Constraints from pole‐to‐pole (HIPPO) observations across the Pacific. Journal of Geophysical Research: Atmospheres, 119, 195 – 206. https://doi.org/10.1002/2013JD020824
dc.identifier.citedreferenceWang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee, B. H., & Haskins, J. D. ( 2019 ). The role of chlorine in global tropospheric chemistry. Atmospheric Chemistry and Physics, 19 ( 6 ), 3981 – 4003. https://doi.org/10.5194/acp‐19‐3981‐2019
dc.identifier.citedreferenceWang, Y. H., Jacob, D. J., & Logan, J. A. ( 1998 ). Global simulation of tropospheric O‐3‐NO x ‐hydrocarbon chemistry 1. Model formulation. Journal of Geophysical Research, 103 ( D9 ), 10,713 – 10,725. https://doi.org/10.1029/98JD00158
dc.identifier.citedreferenceZhang, L. M., Gong, S. L., Padro, J., & Barrie, L. ( 2001 ). A size‐segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 35 ( 3 ), 549 – 560. https://doi.org/10.1016/s1352‐2310(00)00326‐5
dc.identifier.citedreferenceZieger, P., Väisänen, O., Corbin, J. C., Partridge, D. G., Bastelberger, S., Mousavi‐Fard, M., Rosati, B., Gysel, M., Krieger, U. K., Leck, C., Nenes, A., Riipinen, I., Virtanen, A., & Salter, M. E. ( 2017 ). Revising the hygroscopicity of inorganic sea salt particles. Nature Communications, 8 ( 1 ), 1 – 10. https://doi.org/10.1038/ncomms15883
dc.identifier.citedreferenceAhlm, L., Jones, A., Stjern, C. W., Muri, H., Kravitz, B., & Kristjansson, J. E. ( 2017 ). Marine cloud brightening—As effective without clouds. Atmospheric Chemistry and Physics, 17 ( 21 ), 13,071 – 13,087. https://doi.org/10.5194/acp‐17‐13071‐2017
dc.identifier.citedreferenceIPCC ( 2007 ). Climate change 2007: The physical science basis. In S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller, & Z. Chen (Eds.), (p. 996 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceAlexander, B., Allman, D. J., Amos, H. M., Fairlie, T. D., Dachs, J., Hegg, D. A., & Sletten, R. S. ( 2012 ). Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean. Journal of Geophysical Research, 117, D06304. https://doi.org/10.1029/2011JD016773
dc.identifier.citedreferenceAlexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., & Thiemens, M. H. ( 2005 ). Sulfate formation in sea‐salt aerosols: Constraints from oxygen isotopes. Journal of Geophysical Research, 110, D10307. https://doi.org/10.1029/2004JD005659
dc.identifier.citedreferenceAlterskjaer, K., Kristjansson, J. E., Boucher, O., Muri, H., Niemeier, U., Schmidt, H., Schulz, M., & Timmreck, C. ( 2013 ). Sea‐salt injections into the low‐latitude marine boundary layer: The transient response in three Earth system models. Journal of Geophysical Research: Atmospheres, 118, 12,195 – 12,206. https://doi.org/10.1002/2013JD020432
dc.identifier.citedreferenceAlterskjær, K., Kristjánsson, J. E., & Seland, Ø. ( 2012 ). Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations. Atmospheric Chemistry and Physics, 12 ( 5 ), 2795 – 2807. https://doi.org/10.5194/acp‐12‐2795‐2012
dc.identifier.citedreferenceAmos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., & Steffen, A. ( 2012 ). Gas‐particle partitioning of atmospheric Hg (II) and its effect on global mercury deposition. Atmospheric Chemistry and Physics, 12 ( 1 ), 591 – 603. https://doi.org/10.5194/acp‐12‐591‐2012
dc.identifier.citedreferenceBarrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., & Rasmussen, R. A. ( 1988 ). Ozone destruction and photochemical‐reactions at polar sunrise in the lower arctic atmosphere. Nature, 334 ( 6178 ), 138 – 141. https://doi.org/10.1038/334138a0
dc.identifier.citedreferenceBellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., & Boucher, O. ( 2011 ). Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2‐ES and the role of ammonium nitrate. Journal of Geophysical Research, 116. https://doi.org/10.1029/2011JD016074
dc.identifier.citedreferenceBian, H. S., & Prather, M. J. ( 2002 ). Fast‐J2: Accurate simulation of stratospheric photolysis in global chemical models. Journal of Atmospheric Chemistry, 41 ( 3 ), 281 – 296. https://doi.org/10.1023/a:1014980619462
dc.identifier.citedreferenceCarptenter, L. J., MacDonald, S. M., Shaw, M. D., Kumar, R., Saunders, R. W., Parthipan, R., Wilson, J., & Plane, J. M. ( 2013 ). Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nature Geoscience, 6, No. 2, 02.2013, 108 – 111. https://doi.org/10.1038/ngeo1687
dc.identifier.citedreferenceChen, Q., Schmidt, J. A., Shah, V., Jaeglé, L., Sherwen, T., & Alexander, B. ( 2017 ). Sulfate production by reactive bromine: Implications for the global sulfur and reactive bromine budgets. Geophysical Research Letters, 44, 7069 – 7078. https://doi.org/10.1002/2017GL073812
dc.identifier.citedreferenceConley, A. J., Lamarque, J. F., Vitt, F., Collins, W. D., & Kiehl, J. ( 2013 ). PORT, a CESM tool for the diagnosis of radiative forcing. Geoscientific Model Development, 6 ( 2 ), 469 – 476. https://doi.org/10.5194/gmd‐6‐469‐2013
dc.identifier.citedreferenceConnolly, P. J., McFiggans, G. B., Wood, R., & Tsiamis, A. ( 2014 ). Factors determining the most efficient spray distribution for marine cloud brightening. Philosophical Transactions of the Royal Society a‐Mathematical Physical and Engineering Sciences, 372 ( 2031 ). https://doi.org/10.1098/rsta.2014.0056
dc.identifier.citedreferenceEastham, S. D., Weisenstein, D. K., & Barrett, S. R. H. ( 2014 ). Development and evaluation of the unified tropospheric‐stratospheric chemistry extension (UCX) for the global chemistry‐transport model GEOS‐Chem. Atmospheric Environment, 89, 52 – 63. https://doi.org/10.1016/j.atmosenv.2014.02.001
dc.identifier.citedreferenceFan, S. M., & Jacob, D. J. ( 1992 ). Surface ozone depletion in arctic spring sustained by bromine reactions on aerosols. Nature, 359 ( 6395 ), 522 – 524. https://doi.org/10.1038/359522a0
dc.identifier.citedreferenceFountoukis, C., & Nenes, A. ( 2007 ). ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K + ‐Ca 2+ ‐Mg 2+ ‐Nh(4)( + )‐Na + ‐SO 4 2 ‐‐NO 3 ‐‐Cl‐‐H 2 O aerosols. Atmospheric Chemistry and Physics, 7 ( 17 ), 4639 – 4659. https://doi.org/10.5194/acp‐7‐4639‐2007
dc.identifier.citedreferenceHeald, C. L., Ridley, D. A., Kroll, J. H., Barrett, S. R. H., Cady‐Pereira, K. E., Alvarado, M. J., & Holmes, C. D. ( 2014 ). Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmospheric Chemistry and Physics, 14 ( 11 ), 5513 – 5527. https://doi.org/10.5194/acp‐14‐5513‐2014
dc.identifier.citedreferenceGerber, H. E. ( 1985 ). Relative‐humidity parameterization of the Navy aerosol model (NAM). NRL Rep. (Vol. 8956 ). Washington, DC: Natl. Res. Lab.
dc.identifier.citedreferenceHolmes, C. D. ( 2018 ). Methane feedback on atmospheric chemistry: Methods, models, and mechanisms. Journal of Advances in Modeling Earth Systems, 10, 1087 – 1099. https://doi.org/10.1002/2017MS001196
dc.identifier.citedreferenceHolmes, C. D., Prather, M. J., Sovde, O. A., & Myhre, G. ( 2013 ). Future methane, hydroxyl, and their uncertainties: Key climate and emission parameters for future predictions. Atmospheric Chemistry and Physics, 13 ( 1 ), 285 – 302. https://doi.org/10.5194/acp‐13‐285‐2013
dc.identifier.citedreferenceHorowitz, H. M., Jacob, D. J., Zhang, Y., Dibble, T. S., Slemr, F., Amos, H. M., Schmidt, J. A., Corbitt, E. S., Marais, E. A., & Sunderland, E. M. ( 2017 ). A new mechanism for atmospheric mercury redox chemistry: Implications for the global mercury budget. Atmospheric Chemistry and Physics, 17, 6353 – 6371. https://doi.org/10.5194/acp‐17‐6353‐2017
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.