Show simple item record

Optimizing MRFâ ASL scan design for precise quantification of brain hemodynamics using neural network regression

dc.contributor.authorLahiri, Anish
dc.contributor.authorFessler, Jeffrey A.
dc.contributor.authorHernandez‐garcia, Luis
dc.date.accessioned2020-03-17T18:34:56Z
dc.date.availableWITHHELD_16_MONTHS
dc.date.available2020-03-17T18:34:56Z
dc.date.issued2020-06
dc.identifier.citationLahiri, Anish; Fessler, Jeffrey A.; Hernandez‐garcia, Luis (2020). "Optimizing MRFâ ASL scan design for precise quantification of brain hemodynamics using neural network regression." Magnetic Resonance in Medicine 83(6): 1979-1991.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/154517
dc.publisherElsevier/Academic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroptimization
dc.subject.otherregression
dc.subject.otherscan design
dc.subject.otherprecision
dc.subject.otherarterial spin labeling
dc.subject.otherbrain hemodynamics
dc.subject.otherCramerâ Rao bound
dc.subject.otherdeep learning
dc.subject.otherestimation
dc.subject.othermagnetic resonance fingerprinting
dc.subject.otherneural networks
dc.titleOptimizing MRFâ ASL scan design for precise quantification of brain hemodynamics using neural network regression
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154517/1/mrm28051.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154517/2/mrm28051_am.pdf
dc.identifier.doi10.1002/mrm.28051
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceWoods JG, Chappell MA, Okell TW. A general framework for optimizing arterial spin labeling MRI experiments. Magn Reson Med. 2019; 81: 2474 â 2488.
dc.identifier.citedreferenceChen Y, Wang DJJ, Detre JA. Testâ retest reliability of arterial spin labeling with common labeling strategies. J Magn Reson Imaging. 2011; 33: 940 â 949.
dc.identifier.citedreferencePerthen JE, Bydder M, Restom K, Liu TT. SNR and functional sensitivity of BOLD and perfusionâ based fMRI using arterial spin labeling with spiral SENSE at 3 T. Magn Reson Imaging. 2008; 26: 513 â 522.
dc.identifier.citedreferenceWong EC, Buxton RB, Frank LR. A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med. 1998; 40: 348 â 355.
dc.identifier.citedreferencevan Gelderen P, de Zwart JA, Duyn JH. Pittfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med. 2008; 59: 788 â 795.
dc.identifier.citedreferenceMa D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013; 495: 187 â 192.
dc.identifier.citedreferenceSu P, Mao D, Liu P, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 2017; 78: 1812 â 1823.
dc.identifier.citedreferenceWright KL, Jiang Y, Ma D, et al. Estimation of perfusion properties with MR fingerprinting arterial spin labeling. Magn Reson Imaging. 2018; 50: 68 â 77.
dc.identifier.citedreferenceCohen O, Zhu B, Rosen MS. MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn Reson Med. 2018; 80: 885 â 894.
dc.identifier.citedreferenceNataraj G, Nielsen Jâ F, Scott C, Fessler JA. Dictionaryâ free MRI PERK: parameter estimation via regression with kernels. IEEE Trans Med Imaging. 2018; 37: 2103 â 2114.
dc.identifier.citedreferenceLahiri A, Fessler JA, Hernandezâ Garcia L. Optimized scan design for ASL fingerprinting and multiparametric estimation using neural network regression. In Proceedings of the 26th Annual Meeting of International Society for Magnetic Resonance in Medicine (ISMRM), Paris, 2018. p. 309.
dc.identifier.citedreferenceNataraj G, Nielsen JF, Fessler JA. Optimizing MR scan design for modelâ based T 1, T 2 estimation from steadyâ state sequences. IEEE Trans Med Imaging. 2017; 36: 467 â 477.
dc.identifier.citedreferenceZhao B, Haldar JP, Liao C, et al. Optimal experiment design for magnetic resonance fingerprinting: Cramérâ Rao bound meets spin dynamics. IEEE Trans Med Imaging. 2019; 38: 844 â 861.
dc.identifier.citedreferenceXie J, Gallichan D, Gunn RN, Jezzard P. Optimal design of pulsed arterial spin labeling MRI experiments. Magn Reson Med. 2008; 59: 826 â 834.
dc.identifier.citedreferenceBuxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998; 40: 383 â 396.
dc.identifier.citedreferenceBrookes MJ, Morris PG, Gowland PA, Francis ST. Noninvasive measurement of arterial cerebral blood volume using Lookâ Locker EPI and arterial spin labeling. Magn Reson Med. 2007; 58: 41 â 54.
dc.identifier.citedreferenceCapron T, Troalen T, Cozzone PJ, Bernard M, Kober F. Cineâ ASL: a steadyâ pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part II. Theoretical model and sensitivity optimization. Magn Reson Med. 2013; 70: 1399 â 1408.
dc.identifier.citedreferenceNoguchi T, Yoshiura T, Hiwatashi K, et al. Arterial spinâ labelin magnetic resonance imaging: the timing of regional maximal perfusionâ related signal intensity revealed by a multiphase technique. Japanese J Radiol. 2012; 30: 137 â 145.
dc.identifier.citedreferenceParkes LM. Quantification of cerebral perfusion using arterial spin labeling: twoâ compartment models. J Magn Reson Imaging. 2005; 22: 732 â 736.
dc.identifier.citedreferenceZhou J, Wilson DA, Ulatowski JA, Traystman RJ, van Zijl BCM. Twoâ compartment exchange model for perfusion quantification using arterial spin tagging. J Cerebral Blood Flow Metabolism. 2001; 21: 440 â 455.
dc.identifier.citedreferenceSu P, Mao D, Liu P, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 2017; 78: 1812 â 1823.
dc.identifier.citedreferenceKingma DP, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980. 2014, 12.
dc.identifier.citedreferenceGlover GH, Li TQ, Ress D. Imageâ based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. 2000; 167 (March): 162 â 167.
dc.identifier.citedreferenceLund TE, Madsen KH, Sidaros K, Luo Wâ L, Nichols TE. Nonâ white noise in fMRI: does modelling have an impact? NeuroImage. 2006; 29: 54 â 66.
dc.identifier.citedreferenceLiu TT, Wong EC. A signal processing model for arterial spin labeling functional MRI. NeuroImage. 2005; 24: 207 â 215.
dc.identifier.citedreferenceMumford JA, Hernandezâ Garcia L, Lee GR, Nichols TE. Estimation efficiency and statistical power in arterial spin labeling fMRI. NeuroImage. 2006; 33: 103 â 114.
dc.identifier.citedreferenceFriston KJ, Ashburner J, Kiebel S, Nichols T, Penny WD. Statistical Parametric Mapping: The Analysis of Funtional Brain Images. Elsevier/Academic Press; 2007.
dc.identifier.citedreferenceAlsop DC, Detre JA. Reduced transitâ time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cerebral Blood Flow Metabolism. 1996; 16: 1236 â 1249.
dc.identifier.citedreferenceGatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology. Radiology. 2013; 269: 8 â 14.
dc.identifier.citedreferenceLee SS, Byun JH, Park BJ, et al. Quantitative analysis of diffusionâ weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. J Magn Reson Imaging. 2008; 28: 928 â 936.
dc.identifier.citedreferenceRamani A, Jensen JH, Helpern JA. Quantitative MR imaging in Alzheimer disease. Radiology. 2006; 241: 26 â 44.
dc.identifier.citedreferenceRosenthal DI, Barton NW, McKusick KA, et al. Quantitative imaging of Gaucher disease. Radiology. 1992; 185: 841 â 845.
dc.identifier.citedreferenceBolar DS, Levin DL, Hopkins SR, et al. Quantification of regional pulmonary blood flow using ASLâ FAIRER. Magn Reson Med. 2006; 55: 1308 â 1317.
dc.identifier.citedreferenceBoxerman JL, Schmainda KM, Weisskoff RM, et al. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol. 2006; 27: 859 â 867.
dc.identifier.citedreferenceDe Bazelaire C, Rofsky NM, Duhamel G, Michaelson MD, George D, Alsop DC. Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma(1). Acad Radiol. 2005; 12: 347 â 357.
dc.identifier.citedreferenceDeibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spinâ labeling in routine clinical practice, part 1: technique and artifacts. Am J Neuroradiol. 2008; 29: 1228 â 1234.
dc.identifier.citedreferenceDetre JA, Rao H, Wang DJJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging. 2012; 35: 1026 â 1037.
dc.identifier.citedreferenceHaller S, Zaharchuk G, Thomas DL, Lovblad Kâ O, Barkhof F, Golay X. Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology. 2016; 281: 337 â 356.
dc.identifier.citedreferenceHo VB, Smirniotopoulos JG, Murphy FM, et al. Radiologicâ pathologic correlation: hemangioblastoma. Am J Neuroradiol. 2008; 13: 1343 â 1352.
dc.identifier.citedreferenceKucharczyk J, Mintorovitch J, Asgari HS, Moseley M. Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn Reson Med. 1991; 19: 311 â 315.
dc.identifier.citedreferenceWatts JM, Whitlow CT, Maldjian JA. Clinical applications of arterial spin labeling. NMR Biomed. 2013; 26: 892 â 900.
dc.identifier.citedreferenceRoditi G, Maki JH, Oliveira G, Michaely HJ. Renovascular imaging in the NSF Era. J Magn Reson Imaging. 2009; 30: 1323 â 1334.
dc.identifier.citedreferenceWang Y, Alkasab TK, Narin O, et al. Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadoliniumâ based contrast agent guidelines. Radiology. 2011; 260: 105 â 111.
dc.identifier.citedreferenceDetre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992; 23: 37 â 45.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.