Show simple item record

Distinctive immunoregulatory effects of adenosine on T cells of older humans

dc.contributor.authorHesdorffer, Charles S.
dc.contributor.authorMalchinkhuu, Enkhzol
dc.contributor.authorBiragyn, Arya
dc.contributor.authorMabrouk, Omar S.
dc.contributor.authorKennedy, Robert T.
dc.contributor.authorMadara, Karen
dc.contributor.authorTaub, Dennis D.
dc.contributor.authorLongo, Dan L.
dc.contributor.authorSchwartz, Janice B.
dc.contributor.authorFerrucci, Luigi
dc.contributor.authorGoetzl, Edward J.
dc.date.accessioned2020-03-17T18:34:58Z
dc.date.available2020-03-17T18:34:58Z
dc.date.issued2012-03
dc.identifier.citationHesdorffer, Charles S.; Malchinkhuu, Enkhzol; Biragyn, Arya; Mabrouk, Omar S.; Kennedy, Robert T.; Madara, Karen; Taub, Dennis D.; Longo, Dan L.; Schwartz, Janice B.; Ferrucci, Luigi; Goetzl, Edward J. (2012). "Distinctive immunoregulatory effects of adenosine on T cells of older humans." The FASEB Journal 26(3): 1301-1310.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154518
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.othercytokines
dc.subject.othercellular antigens
dc.subject.otherchemotaxis
dc.subject.otherimmunodeficiency
dc.subject.otherimmunosenescence
dc.titleDistinctive immunoregulatory effects of adenosine on T cells of older humans
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154518/1/fsb2026003033.pdf
dc.identifier.doi10.1096/fj.11-197046
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceHuang, M. C., Greig, N. H., Luo, W., Tweedie, D., Schwartz, J. B., Longo, D. L., Ferrucci, L., Ershler, W. B., and Goetzl, E. J. ( 2011 ) Preferential enhancement of older human T cell cytokine generation, chemotaxis, proliferation and survival by lenalidomide. Clin. Immunol. 138, 201 – 211
dc.identifier.citedreferenceResta, R., Yamashita, Y., and Thompson, L. F. ( 1998 ) Ectoenzyme and signaling functions of lymphocyte CD73. Immunol. Rev. 161, 95 – 109
dc.identifier.citedreferenceBorsellino, G., Kleinewietfeld, M., Di Mitri, D., Sternjak, A., Diamantini, A., Giometto, R., Hopner, S., Centonze, D., Bernardi, G., Dell’Acqua, M. L., Rossini, P. M., Battistini, L., Rotzschke, O., and Falk, K. ( 2007 ) Expression of ectonucleoti‐dase CD39 byFoxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225 – 1232
dc.identifier.citedreferenceDeaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J. F., Enjyoji, K., Linden, J., Oukka, M., Kuchroo, V. K., Strom, T. B., and Robson, S. C. ( 2007 ) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257 – 1265
dc.identifier.citedreferenceZhou, Q., Yan, J., Putheti, P., Wu, Y., Sun, X., Toxavidis, V., Tigges, J., Kassam, N., Enjyoji, K., Robson, S. C., Strom, T. B., and Gao, W. ( 2009 ) Isolated CD39 expression on CD4+ T cells denotes both regulatory and memory populations. Am. J. Transplant. 9, 2303 – 2311
dc.identifier.citedreferenceAiras, L., Niemela, J., Salmi, M., Puurunen, T., Smith, D. J., and Jalkanen, S. ( 1997 ) Differential regulation and function of CD73, a glycosyl‐phosphatidylinositol‐linked 70‐kD adhesion molecule, on lymphocytes and endothelial cells. J. Cell Biol. 136, 421 – 431
dc.identifier.citedreferenceTakedachi, M., Qu, D., Ebisuno, Y., Oohara, H., Joachims, M. L., McGee, S. T., Maeda, E., McEver, R. P., Tanaka, T., Miyasaka, M., Murakami, S., Krahn, T., Blackburn, M. R., and Thompson, L. F. ( 2008 ) CD73‐generated adenosine restricts lymphocyte migration into draining lymph nodes. J. Immunol. 180, 6288 – 6296
dc.identifier.citedreferenceAlgars, A., Karikoski, M., Yegutkin, G. G., Stoitzner, P., Niemela, J., Salmi, M., and Jalkanen, S. ( 2011 ) Different role of CD73 in leukocyte trafficking via blood and lymph vessels. Blood 117, 4387 – 4393
dc.identifier.citedreferenceBlay, J., White, T. D., and Hoskin, D. W. ( 1997 ) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 57, 2602 – 2605
dc.identifier.citedreferenceDos Reis, G. A., Nobrega, A. F., and de Carvalho, R. P. ( 1986 ) Purinergic modulation of T‐lymphocyte activation: differential susceptibility of distinct activation steps and correlation with intracellular 3′,5′‐cyclic adenosine monophosphate accumulation. Cell. Immunol. 101, 213 – 231
dc.identifier.citedreferenceButler, J. J., Mader, J. S., Watson, C. L., Zhang, H., Blay, J., and Hoskin, D. W. ( 2003 ) Adenosine inhibits activation‐induced T cell expression of CD2 and CD28 co‐stimulatory molecules: role of interleukin‐2 and cyclic AMP signaling pathways. J. Cell. Biochem. 89, 975 – 991
dc.identifier.citedreferenceGessi, S., Varani, K., Merighi, S., Fogli, E., Sacchetto, V., Benini, A., Leung, E., Mac‐Lennan, S., and Borea, P. A. ( 2007 ) Adenosine and lymphocyte regulation. Purinergic Signal. 3, 109 – 116
dc.identifier.citedreferenceParish, S. T., Kim, S., Sekhon, R. K., Wu, J. E., Kawakatsu, Y., and Effros, R. B. ( 2010 ) Adenosine deaminase modulation of telomerase activity and replicative senescence in human CD8 T lymphocytes. J. Immunol. 184, 2847 – 2854
dc.identifier.citedreferenceHoskin, D. W., Mader, J. S., Furlong, S. J., Conrad, D. M., and Blay, J. ( 2008 ) Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells [Review]. Intl. J. Oncol. 32, 527 – 535
dc.identifier.citedreferenceErnst, P. B., Garrison, J. C., and Thompson, L. F. ( 2010 ) Much ado about adenosine: adenosine synthesis and function in regulatory T cell biology. J. Immunol. 185, 1993 – 1998
dc.identifier.citedreferenceHimer, L., Csoka, B., Selmeczy, Z., Koscso, B., Pocza, T., Pacher, P., Nemeth, Z. H., Deitch, E. A., Vizi, E. S., Cronstein, B. N., and Hasko, G. ( 2010 ) Adenosine A2A receptor activation protects CD4+ T lymphocytes against activation‐induced cell death. FASEB J. 24, 2631 – 2640
dc.identifier.citedreferenceZheng, Y., Voice, J. K., Kong, Y., and Goetzl, E. J. ( 2000 ) Altered expression and functional profile of lysophosphatidic acid receptors in mitogen‐activated human blood T lymphocytes. FASEB J. 14, 2387 – 2389
dc.identifier.citedreferenceOlkhanud, P. B., Damdinsuren, B., Bodogai, M., Gress, R. E., Sen, R., Wejksza, K., Malchinkhuu, E., Wersto, R. P., and Biragyn, A. ( 2011 ) Tumor‐evoked regulatory B cells promote breast cancer metastasis by converting resting CD4 T cells to T‐regulatory cells. Cancer Res. 71, 3505 – 3515
dc.identifier.citedreferenceGraler, M. H., Huang, M. C., Watson, S., and Goetzl, E. J. ( 2005 ) Immunological effects of transgenic constitutive expression of the type 1 sphingosine 1‐phosphate receptor by mouse lymphocytes. J. Immunol. 174, 1997 – 2003
dc.identifier.citedreferenceGillis, S., Kozak, R., Durante, M., and Weksler, M. E. ( 1981 ) Immunological studies of aging. Decreased production of and response to T cell growth factor by lymphocytes from aged humans. J. Clin. Invest. 67, 937 – 942
dc.identifier.citedreferenceRea, I. M., Stewart, M., Campbell, P., Alexander, H. D., Crockard, A. D., and Morris, T. C. ( 1996 ) Changes in lymphocyte subsets, interleukin 2, and soluble interleukin 2 receptor in old and very old age. Gerontology 42, 69 – 78
dc.identifier.citedreferenceCaruso, C., Candore, G., Cigna, D., Di Lorenzo, G., Sireci, G., Dieli, F., and Salerno, A. ( 1996 ) Cytokine production pathway in the elderly. Immunol. Res. 15, 84 – 90
dc.identifier.citedreferenceWeng, N. P., Akbar, A. N., and Goronzy, J. ( 2009 ) CD28 ‐ T cells: their role in the age‐associated decline of immune function. Trends Immunol. 30, 306 – 312
dc.identifier.citedreferenceKase, H., Richardson, P. and Jenner, P., eds ( 1999 ) Adenosine Receptors and Parkinson’s Disease, Academic Press, New York
dc.identifier.citedreferenceEl Yacoubi, M., Ledent, C., Parmentier, M., Bertorelli, R., Ongini, E., Costentin, J., and Vaugeois, J. M. ( 2001 ) Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice. Brit. J. Pharmacol. 134, 68 – 77
dc.identifier.citedreferenceShook, B. C., Rassnick, S., Osborne, M. C., Davis, S., Westover, L., Boulet, J., Hall, D., Rupert, K. C., Heintzelman, G. R., Hansen, K., Chakravarty, D., Bullington, J. L., Russell, R., Branum, S., Wells, K. M., Damon, S., Youells, S., Li, X., Beauchamp, D. A., Palmer, D., Reyes, M., Demarest, K., Tang, Y., Rhodes, K., and Jackson, P. F. ( 2010 ) In vivo characterization of a dual adenosine A2A/A1 receptor antagonist in animal models of Parkinson’s disease. J. Med. Chem. 53, 8104 – 8115
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.