Show simple item record

A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart

dc.contributor.authorNoujaim, Sami F.
dc.contributor.authorKaur, Kuljeet
dc.contributor.authorMilstein, Michelle
dc.contributor.authorJones, Julie M.
dc.contributor.authorFurspan, Philip
dc.contributor.authorJiang, Daniel
dc.contributor.authorAuerbach, David S.
dc.contributor.authorHerron, Todd
dc.contributor.authorMeisler, Miriam H.
dc.contributor.authorJalife, José
dc.date.accessioned2020-03-17T18:35:09Z
dc.date.available2020-03-17T18:35:09Z
dc.date.issued2012-01
dc.identifier.citationNoujaim, Sami F.; Kaur, Kuljeet; Milstein, Michelle; Jones, Julie M.; Furspan, Philip; Jiang, Daniel; Auerbach, David S.; Herron, Todd; Meisler, Miriam H.; Jalife, José (2012). "A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart." The FASEB Journal 26(1): 63-72.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154524
dc.description.abstractEvidence supports the expression of brain‐type sodium channels in the heart. Their functional role, however, remains controversial. We used global NaV1.6‐null mice to test the hypothesis that NaV1.6 contributes to the maintenance of propagation in the myocardium and to excitation‐contraction (EC) coupling. We demonstrated expression of transcripts encoding full‐length NaV1.6 in isolated ventricular myocytes and confirmed the striated pattern of NaV1.6 fluorescence in myocytes. On the ECG, the PR and QRS intervals were prolonged in the null mice, and the Ca2+ transients were longer in the null cells. Under patch clamping, at holding potential (HP) = –120 mV, the peak INa was similar in both phenotypes. However, at HP = –70 mV, the peak INa was smaller in the nulls. In optical mapping, at 4 mM [K+]o, 17 null hearts showed slight (7%) reduction of ventricular conduction velocity (CV) compared to 16 wild‐type hearts. At 12 mM [K+]o, CV was 25% slower in a subset of 9 null vs. 9 wild‐type hearts. These results highlight the importance of neuronal sodium channels in the heart, whereby NaV1.6 participates in EC coupling, and represents an intrinsic depolarizing reserve that contributes to excitation.—Noujaim, S. F., Kaur, K., Milstein, M., Jones, J. M., Furspan, P., Jiang, D., Auerbach, D. S., Herron, T., Meisler, M. H., Jalife, J. A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart. FASEB J. 26, 63–72 (2012). www.fasebj.org
dc.publisherWiley Periodicals, Inc.
dc.subject.otherataxia3
dc.subject.otheroptical mapping
dc.subject.otherKey Words
dc.subject.otherhyperkalemia
dc.subject.otherbrain‐type sodium channels
dc.titleA null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154524/1/fsb2fj10179770.pdf
dc.identifier.doi10.1096/fj.10-179770
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceMorley, G. E., Vaidya, D., Jalife, J. ( 2000 ) Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J. Cardiovasc. Electrophysiol. 11, 375 – 377
dc.identifier.citedreferenceMaier, S. K., Westenbroek, R. E., McCormick, K. A., Curtis, R., Scheuer, T., and Catterall, W. A. ( 2004 ) Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation 109, 1421 – 1427
dc.identifier.citedreferenceLopez‐Santiago, L. F., Meadows, L. S., Ernst, S. J., Chen, C., Malhotra, J. D., McEwen, D. P., Speelman, A., Noebels, J. L., Maier, S. K., Lopatin, A. N., and Isom, L. L. ( 2007 ) Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. J. Mol. Cell. Cardiol. 43, 636 – 647
dc.identifier.citedreferenceMaier, S. K., Westenbroek, R. E., Schenkman, K. A., Feigl, E. O., Scheuer, T., and Catterall, W. A. ( 2002 ) An unexpected role for brain‐type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc. Natl. Acad. Sci. U. S. A. 99, 4073 – 4078
dc.identifier.citedreferenceBrette, F., and Orchard, C. H. ( 2006 ) No apparent requirement for neuronal sodium channels in excitation‐contraction coupling in rat ventricular myocytes. Circ. Res. 98, 667 – 674
dc.identifier.citedreferenceMaier, S. K., Westenbroek, R. E., Yamanushi, T. T., Dobrzynski, H., Boyett, M. R., Catterall, W. A., and Scheuer, T. ( 2003 ) An unexpected requirement for brain‐type sodium channels for control of heart rate in the mouse sinoatrial node. Proc. Natl. Acad. Sci. U. S. A. 100, 3507 – 3512
dc.identifier.citedreferenceDu, Y., Huang, X., Wang, T., Han, K., Zhang, J., Xi, Y., Wu, G., and Ma, A. ( 2007 ) Downregulation of neuronal sodium channel subunits Nav1.1 and Nav1.6 in the sinoatrial node from volume‐overloaded heart failure rat. Pflügers Arch. 454, 451 – 459
dc.identifier.citedreferenceMeisler, M. H., Plummer, N. W., Burgess, D. L., Buchner, D. A., and Sprunger, L. K. ( 2004 ) Allelic mutations of the sodium channel SCN8A reveal multiple cellular and physiological functions. Genetica 122, 37 – 45
dc.identifier.citedreferenceCote, P. D., De Repentigny, Y., Coupland, S. G., Schwab, Y., Roux, M. J., Levinson, S. R., and Kothary, R. ( 2005 ) Physiological maturation of photoreceptors depends on the voltage‐gated sodium channel NaV1.6 (Scn8a). J. Neurosci. 25, 5046 – 5050
dc.identifier.citedreferenceDe Repentigny, Y., Cote, P. D., Pool, M., Bernier, G., Girard, S., Vidal, S. M., and Kothary, R. ( 2001 ) Pathological and genetic analysis of the degenerating muscle (dmu) mouse: a new allele of Scn8a. Hum. Mol. Genet. 10, 1819 – 1827
dc.identifier.citedreferenceSharkey, L. M., Cheng, X., Drews, V., Buchner, D. A., Jones, J. M., Justice, M. J., Waxman, S. G., Dib‐Hajj, S. D., and Meisler, M. H. ( 2009 ) The ataxia3 mutation in the N‐terminal cytoplasmic domain of sodium channel Na(v)1.6 disrupts intracellular trafficking. J. Neurosci. 29, 2733 – 2741
dc.identifier.citedreferenceCerrone, M., Noujaim, S. F., Tolkacheva, E. G., Talkachou, A., O’Connell, R., Berenfeld, O., Anumonwo, J., Pandit, S. V., Vikstrom, K., Napolitano, C., Priori, S. G., and Jalife, J. ( 2007 ) Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 101, 1039 – 1048
dc.identifier.citedreferenceHaufe, V., Cordeiro, J. M., Zimmer, T., Wu, Y. S., Schiccitano, S., Benndorf, K., and Dumaine, R. ( 2005 ) Contribution of neuronal sodium channels to the cardiac fast sodium current INa is greater in dog heart Purkinje fibers than in ventricles. Cardiovasc. Res. 65, 117 – 127
dc.identifier.citedreferenceBrette, F., and Orchard, C. H. ( 2006 ) Density and sub‐cellular distribution of cardiac and neuronal sodium channel isoforms in rat ventricular myocytes. Biochem. Biophys. Res. Commun. 348, 1163 – 1166
dc.identifier.citedreferenceChen, Y., Yu, F. H., Sharp, E. M., Beacham, D., Scheuer, T., and Catterall, W. A. ( 2008 ) Functional properties and differential neuromodulation of Na(v)1.6 channels. Mol. Cell. Neurosci. 38, 607 – 615
dc.identifier.citedreferenceHeinemann, S. H., Terlau, H., and Imoto, K. ( 1992 ) Molecular basis for pharmacological differences between brain and cardiac sodium channels. Pflügers Arch. 422, 90 – 92
dc.identifier.citedreferenceVaidya, D., Morley, G. E., Samie, F. H., and Jalife, J. ( 1999 ) Reentry and fibrillation in the mouse heart. A challenge to the critical mass hypothesis. Circ. Res. 85, 174 – 181
dc.identifier.citedreferenceNoujaim, S. F., Pandit, S. V., Berenfeld, O., Vikstrom, K., Cerrone, M., Mironov, S., Zugermayr, M., Lopatin, A. N., and Jalife, J. ( 2007 ) Up‐regulation of the inward rectifier K+ current (I K1) in the mouse heart accelerates and stabilizes rotors. J. Physiol. 578, 315 – 326
dc.identifier.citedreferenceMorley, G. E., Vaidya, D., Samie, F. H., Lo, C., Delmar, M., and Jalife, J. ( 1999 ) Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J. Cardiovasc. Electrophysiol. 10, 1361 – 1375
dc.identifier.citedreferenceVaitkevicius, R., Saburkina, I., Rysevaite, K., Vaitkeviciene, I., Pauziene, N., Zaliunas, R., Schauerte, P., Jalife, J., and Pauza, D. H. ( 2009 ) Nerve supply of the human pulmonary veins: an anatomical study. Heart Rhythm 6, 221 – 228
dc.identifier.citedreferenceSong, L. S., Sobie, E. A., McCulle, S., Lederer, W. J., Balke, C. W., and Cheng, H. ( 2006 ) Orphaned ryanodine receptors in the failing heart. Proc. Natl. Acad. Sci. U. S. A. 103, 4305 – 4310
dc.identifier.citedreferencePlummer, N. W., McBurney, M. W., and Meisler, M. H. ( 1997 ) Alternative splicing of the sodium channel SCN8A predicts a truncated two‐domain protein in fetal brain and non‐neuronal cells. J. Biol. Chem. 272, 24008 – 24015
dc.identifier.citedreferenceKleber, A. G., and Rudy, Y. ( 2004 ) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84, 431 – 488
dc.identifier.citedreferenceTorres, N. S., Larbig, R., Rock, A., Goldhaber, J. I., and Bridge, J. H. ( 2010 ) Na+ currents are required for efficient excitation‐contraction coupling in rabbit ventricular myocytes: a possible contribution of neuronal Na+ channels. J. Physiol. 588, 4249 – 4260
dc.identifier.citedreferenceBurgess, D. L., Kohrman, D. C., Galt, J., Plummer, N. W., Jones, J. M., Spear, B., and Meisler, M. H. ( 1995 ) Mutation of a new sodium channel gene, Scn8a, in the mouse mutant ‘motor endplate disease’. Nat. Genet. 10, 461 – 465
dc.identifier.citedreferenceMeisler, M. H., O’Brien, J. E., and Sharkey, L. M. ( 2010 ) The sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J. Physiol. 588, 1841 – 1848
dc.identifier.citedreferenceMeisler, M. H., and Kearney, J. A. ( 2005 ) Sodium channel mutations in epilepsy and other neurological disorders. J. Clin. Invest. 115, 2010 – 2017
dc.identifier.citedreferenceChristidis, D., Kalogerakis, D., Chan, T. Y., Mauri, D., Alexiou, G., and Terzoudi, A. ( 2006 ) Is primidone the drug of choice for epileptic patients with QT‐prolongation? A comprehensive analysis of literature. Seizure 15, 64 – 66
dc.identifier.citedreferenceNerbonne, J. M. ( 2000 ) Molecular basis of functional voltage‐gated K+ channel diversity in the mammalian myocardium. J. Physiol. 525 ( Pt. 2 ), 285 – 298
dc.identifier.citedreferencePriori, S. G., and Napolitano, C. ( 2004 ) Genetics of cardiac arrhythmias and sudden cardiac death. Ann. N. Y. Acad. Sci. 1015, 96 – 110
dc.identifier.citedreferenceSauer, A. J., Moss, A. J., McNitt, S., Peterson, D. R., Zareba, W., Robinson, J. L., Qi, M., Goldenberg, I., Hobbs, J. B., Ackerman, M. J., Benhorin, J., Hall, W. J., Kaufman, E. S., Locati, E. H., Napolitano, C., Priori, S. G., Schwartz, P. J., Towbin, J. A., Vincent, G. M., and Zhang, L. ( 2007 ) Long QT syndrome in adults. J. Am. Coll. Cardiol. 49, 329 – 337
dc.identifier.citedreferenceHaufe, V., Chamberland, C., and Dumaine, R. ( 2007 ) The promiscuous nature of the cardiac sodium current. J. Mol. Cell. Cardiol. 42, 469 – 477
dc.identifier.citedreferenceCatterall, W. A., Dib‐Hajj, S., Meisler, M. H., and Pietrobon, D. ( 2008 ) Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J. Neurosci. 28, 11768 – 11777
dc.identifier.citedreferenceTrudeau, M. M., Dalton, J. C., Day, J. W., Ranum, L. P., and Meisler, M. H. ( 2006 ) Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation. J. Med. Genet. 43, 527 – 530
dc.identifier.citedreferenceYu, F. H., and Catterall, W. A. ( 2004 ) The VGL‐chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004, re15
dc.identifier.citedreferenceGoldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., Hunter, J. C., Kallen, R. G., Mandel, G., Meisler, M. H., Netter, Y. B., Noda, M., Tamkun, M. M., Waxman, S. G., Wood, J. N., and Catterall, W. A. ( 2000 ) Nomenclature of voltage‐gated sodium channels. Neuron 28, 365 – 368
dc.identifier.citedreferenceCatterall, W. A. ( 1984 ) The molecular basis of neuronal excitability. Science 223, 653 – 661
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.