Show simple item record

CsI‐Antisolvent Adduct Formation in All‐Inorganic Metal Halide Perovskites

dc.contributor.authorMoot, Taylor
dc.contributor.authorMarshall, Ashley R.
dc.contributor.authorWheeler, Lance M.
dc.contributor.authorHabisreutinger, Severin N.
dc.contributor.authorSchloemer, Tracy H.
dc.contributor.authorBoyd, Caleb C.
dc.contributor.authorDikova, Desislava R.
dc.contributor.authorPach, Gregory F.
dc.contributor.authorHazarika, Abhijit
dc.contributor.authorMcGehee, Michael D.
dc.contributor.authorSnaith, Henry J.
dc.contributor.authorLuther, Joseph M.
dc.date.accessioned2020-03-17T18:35:11Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:35:11Z
dc.date.issued2020-03
dc.identifier.citationMoot, Taylor; Marshall, Ashley R.; Wheeler, Lance M.; Habisreutinger, Severin N.; Schloemer, Tracy H.; Boyd, Caleb C.; Dikova, Desislava R.; Pach, Gregory F.; Hazarika, Abhijit; McGehee, Michael D.; Snaith, Henry J.; Luther, Joseph M. (2020). "CsI‐Antisolvent Adduct Formation in All‐Inorganic Metal Halide Perovskites." Advanced Energy Materials 10(9): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/154525
dc.description.abstractThe excellent optoelectronic properties demonstrated by hybrid organic/inorganic metal halide perovskites are all predicated on precisely controlling the exact nucleation and crystallization dynamics that occur during film formation. In general, high‐performance thin films are obtained by a method commonly called solvent engineering (or antisolvent quench) processing. The solvent engineering method removes excess solvent, but importantly leaves behind solvent that forms chemical adducts with the lead‐halide precursor salts. These adduct‐based precursor phases control nucleation and the growth of the polycrystalline domains. There has not yet been a comprehensive study comparing the various antisolvents used in different perovskite compositions containing cesium. In addition, there have been no reports of solvent engineering for high efficiency in all‐inorganic perovskites such as CsPbI3. In this work, inorganic perovskite composition CsPbI3 is specifically targeted and unique adducts formed between CsI and precursor solvents and antisolvents are found that have not been observed for other A‐site cation salts. These CsI adducts control nucleation more so than the PbI2–dimethyl sulfoxide (DMSO) adduct and demonstrate how the A‐site plays a significant role in crystallization. The use of methyl acetate (MeOAc) in this solvent engineering approach dictates crystallization through the formation of a CsI–MeOAc adduct and results in solar cells with a power conversion efficiency of 14.4%.It is found that unique adducts form between CsI and dimethyl sulfoxide (DMSO) and certain antisolvents, such as methyl acetate, during film formation of the all‐inorganic perovskite CsPbI3. These adducts significantly influence crystallization and the power conversion efficiency of the resulting solar cells.
dc.publisherWiley Periodicals, Inc.
dc.publisherDanish Technical Press
dc.subject.othersolar cells
dc.subject.otherCsPbI3
dc.subject.otherantisolvent
dc.subject.otheradduct
dc.subject.otheracid–base complex
dc.subject.otherperovskite
dc.titleCsI‐Antisolvent Adduct Formation in All‐Inorganic Metal Halide Perovskites
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154525/1/aenm201903365-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154525/2/aenm201903365.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154525/3/aenm201903365_am.pdf
dc.identifier.doi10.1002/aenm.201903365
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceJ. Stevenson, B. Sorenson, V. H. Subramaniam, J. Raiford, P. P. Khlyabich, Y. Loo, P. Clancy, Chem. Mater. 2017, 29, 2435.
dc.identifier.citedreferenceM. Qin, K. Tse, T. Lau, Y. Li, C. Su, G. Yang, J. Chen, J. Zhu, U. Jeng, G. Li, H. Chen, X. Lu, Adv. Mater. 2019, 31, e1901284.
dc.identifier.citedreferenceA. Hazarika, Q. Zhao, E. A. Gaulding, J. A. Christians, B. Dou, A. R. Marshall, T. Moot, J. J. Berry, J. C. Johnson, J. M. Luther, ACS Nano 2018, 12, 10327.
dc.identifier.citedreferenceZ. Li, M. Yang, J. Park, S. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2016, 28, 284.
dc.identifier.citedreferenceC. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari‐Astani, C. Gratzel, S. M. Zakeeruddin, U. Rothlisberger, M. Gratzel, Energy Environ. Sci. 2016, 9, 656.
dc.identifier.citedreferenceP. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye, Z. Chu, X. Li, X. Yang, Z. Yin, J. You, Nat. Commun. 2018, 9, 2225.
dc.identifier.citedreferenceC. Fai, J. Lau, Z. Wang, N. Sakai, J. Zheng, C. H. Liao, M. Green, S. Huang, H. J. Snaith, A. Ho‐Baillie, Adv. Energy Mater. 2019, 9, 1901685.
dc.identifier.citedreferenceP. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu, J. Phys. Chem. Lett. 2016, 7, 3603.
dc.identifier.citedreferenceA. J. Ramadan, L. A. Rochford, S. Fearn, H. J. Snaith, J. Phys. Chem. Lett. 2017, 8, 4172.
dc.identifier.citedreferenceY. Wang, T. Zhang, M. Kan, Y. Zhao, J. Am. Chem. Soc. 2018, 140, 12345.
dc.identifier.citedreferenceY. Wang, T. Zhang, Y. Wang, T. Zhang, M. Kan, Y. Li, T. Wang, Y. Zhao, Joule 2018, 2, 1.
dc.identifier.citedreferenceY. Wang, M. I. Dar, L. K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Gratzel, Y. Zhao, Science 2019, 365, 591.
dc.identifier.citedreferenceW. Ke, I. Spanopoulos, C. C. Stoumpos, M. G. Kanatzidis, Nat. Commun. 2018, 9, 4785.
dc.identifier.citedreferenceN. Ahn, D.‐Y. Son, I.‐H. Jang, S. M. Kang, M. Choi, N. Park, J. Am. Chem. Soc. 2015, 137, 8696.
dc.identifier.citedreferenceE. D. Risberg, J. Mink, A. Abbasi, M. Y. Skripkin, L. Hajba, P. Lindqvist‐Reis, E. Bencze, M. Sandstr, Dalton Trans. 2008, 1328.
dc.identifier.citedreferenceY. Jo, K. S. Oh, M. Kim, K. Kim, H. Lee, C. Lee, D. S. Kim, Adv. Mater. Interfaces 2016, 3, 1500768.
dc.identifier.citedreferenceJ. C. Hamill, J. Schwartz, Y. Loo, ACS Energy Lett. 2018, 3, 92.
dc.identifier.citedreferenceN. R. Babij, E. O. Mccusker, G. T. Whiteker, B. Canturk, N. Choy, L. C. Creemer, C. V De Amicis, N. M. Hewlett, P. L. Johnson, J. A. Knobelsdorf, F. Li, B. A. Lorsbach, B. M. Nugent, S. J. Ryan, M. R. Smith, Q. Yang, Org. Process Res. Dev. 2016, 20, 661.
dc.identifier.citedreferenceC. M. Hansen, in The Three Dimensional Solubility Parameter and Solvent Diffusion Coefficient, Danish Technical Press, Copenhagen 1967, pp. 13 – 30.
dc.identifier.citedreferenceF. Cataldo, Eur. Chem. Bull 2015, 4, 92.
dc.identifier.citedreferenceA. Hadi, B. J. Ryan, R. D. Nelson, K. Santra, F. Y. Lin, E. W. Cochran, M. G. Panthani, Chem. Mater. 2019, 31, 4990.
dc.identifier.citedreferenceY. Zong, Z. Zhou, M. Chen, N. P. Padture, Y. Zhou, Adv. Energy Mater. 2018, 8, 1800997.
dc.identifier.citedreferenceD. Zhang, S. W. Eaton, Y. Yu, L. Dou, P. Yang, J. Am. Chem. Soc. 2015, 137, 9230.
dc.identifier.citedreferenceJ. K. Wilmshurst, J. Mol. Spectrosc. 1957, 1, 201.
dc.identifier.citedreferenceL. M. Wheeler, E. M. Sanehira, A. R. Marshall, P. Schulz, M. Suri, N. C. Anderson, J. A. Christians, D. Nordlund, D. Sokaras, T. Kroll, S. P. Harvey, J. J. Berry, L. Y. Lin, J. M. Luther, J. Am. Chem. Soc. 2018, 140, 10504.
dc.identifier.citedreferenceA. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92.
dc.identifier.citedreferenceR. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533.
dc.identifier.citedreferenceJ. Cao, X. Jing, J. Yan, C. Hu, R. Chen, J. Yin, J. Li, N. Zheng, J. Am. Chem. Soc. 2016, 138, 9919.
dc.identifier.citedreferenceC. Dong, X. Han, Y. Zhao, J. Li, L. Chang, W. Zhao, Sol. RRL 2018, 2, 1800139.
dc.identifier.citedreferenceT. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Sci. Adv. 2017, 3, 2.
dc.identifier.citedreferenceY. Fu, M. T. Rea, J. Chen, D. J. Morrow, M. P. Hautzinger, Y. Zhao, D. Pan, L. H. Manger, J. C. Wright, R. H. Goldsmith, S. Jin, Chem. Mater. 2017, 29, 8385.
dc.identifier.citedreferenceB. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Nat. Commun. 2018, 9, 1076.
dc.identifier.citedreferenceQ. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang, Joule 2017, 1, 371.
dc.identifier.citedreference“ NREL Best Research‐Cell Efficiencies Chart,” https://www.nrel.gov/pv/assets/pdfs/best‐research‐cell‐efficiencies.20190802.pdf, (accessed: August 2019).
dc.identifier.citedreferenceQ. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
dc.identifier.citedreferenceY. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. Il Seok, M. D. Mcgehee, E. H. Sargent, H. Han, Science 2018, 361, eaat8235.
dc.identifier.citedreferenceZ. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. Van Hest, K. Zhu, Nat. Rev. Mater. 2018, 3, 18017.
dc.identifier.citedreferenceN. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. Il Seok, Nat. Mater. 2014, 13, 897.
dc.identifier.citedreferenceM. Saliba, T. Matsui, J.‐Y. Seo, K. Domanski, J.‐P. Correa‐Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Energy Environ. Sci. 2016, 9, 1989.
dc.identifier.citedreferenceJ. Tong, Z. Song, D. Hoe Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, J. Liu, F. Zhang, S. P. Harvey, Z. Li, S. T. Christensen, G. Teeter, D. Zhao, M. M. Al‐Jassim, M. F. A M van Hest, M. C. Beard, S. E. Shaheen, J. J. Berry, Y. Yan, K. Zhu, Science 2019, 364, 475.
dc.identifier.citedreferenceY. Zhou, O. S. Game, S. Pang, N. P. Padture, J. Phys. Chem. Lett. 2015, 6, 4827.
dc.identifier.citedreferenceM. Jung, S.‐G. Ji, G. Kim, S. Il Seok, Chem. Soc. Rev. 2019, 48, 2011.
dc.identifier.citedreferenceG. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, Adv. Funct. Mater. 2014, 24, 151.
dc.identifier.citedreferenceK. Meng, L. Wu, Z. Liu, X. Wang, Q. Xu, Y. Hu, S. He, X. Li, T. Li, G. Chen, Adv. Mater. 2018, 30, 1706401.
dc.identifier.citedreferenceW. Van Schalkwijk, Nat. Mater. 2015, 348, 366.
dc.identifier.citedreferenceS. Paek, P. Schouwink, E. N. Athanasopoulou, K. T. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M. K. Nazeeruddin, P. Gao, Chem. Mater. 2017, 29, 3490.
dc.identifier.citedreferenceN. Sakai, S. Pathak, H. Chen, A. A. Haghighirad, S. D. Stranks, T. Miyasaka, H. J. Snaith, J. Mater. Chem. A 2016, 4, 4464.
dc.identifier.citedreferenceK. Bruening, C. J. Tassone, J. Mater. Chem. A 2018, 6, 18865.
dc.identifier.citedreferenceK. Wang, M. Tang, H. X. Dang, R. Munir, D. Barrit, M. De Bastiani, E. Aydin, D. Smilgies, S. De Wolf, A. Amassian, Adv. Mater. 2019, 31, e1808357.
dc.identifier.citedreferenceM. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. Van Hest, K. Zhu, Nat. Energy 2017, 2, 17038.
dc.identifier.citedreferenceJ. A. Christians, P. Schulz, J. S. Tinkham, T. H. Schloemer, S. P. Harvey, B. J. T. de Villers, A. Sellinger, J. J. Berry, J. M. Luther, Nat. Energy 2018, 3, 68.
dc.identifier.citedreferenceM. Stolterfoht, C. M. Wolff, J. A. Márquez, S. Zhang, C. J. Hages, D. Rothhardt, S. Albrecht, P. L. Burn, P. Meredith, T. Unold, D. Neher, Nat. Energy 2018, 3, 847.
dc.identifier.citedreferenceR. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee, J. Phys. Chem. Lett. 2016, 7, 746.
dc.identifier.citedreferenceA. F. Palmstrom, G. E. Eperon, T. Leijtens, R. Prasanna, S. N. Habisreutinger, W. Nemeth, E. A. Gaulding, S. P. Dunfield, M. Reese, S. Nanayakkara, T. Moot, J. Werner, J. Lui, B. To, S. T. Christensen, M. D. McGehee, M. F. A. M. Van Hest, J. M. Luther, J. J. Berry, D. T. Moore, Joule 2019, 3, 2193.
dc.identifier.citedreferenceK. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, M. D. McGehee, Nat. Energy 2017, 2, 17009.
dc.identifier.citedreferenceD. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, Science 2016, 351, 151.
dc.identifier.citedreferenceE. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, M. D. McGehee, Chem. Sci. 2015, 6, 613.
dc.identifier.citedreferenceG. Zhou, J. Wu, Y. Zhao, Y. Li, J. Shi, Y. Li, H. Wu, D. Li, Y. Luo, Q. Meng, ACS Appl. Mater. Interfaces 2018, 10, 9503.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.