Show simple item record

MRI safety and devices: An update and expert consensus

dc.contributor.authorJabehdar Maralani, Pejman
dc.contributor.authorSchieda, Nicola
dc.contributor.authorHecht, Elizabeth M.
dc.contributor.authorLitt, Harold
dc.contributor.authorHindman, Nicole
dc.contributor.authorHeyn, Chinthaka
dc.contributor.authorDavenport, Matthew S.
dc.contributor.authorZaharchuk, Greg
dc.contributor.authorHess, Christopher P.
dc.contributor.authorWeinreb, Jeffrey
dc.date.accessioned2020-03-17T18:35:30Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:35:30Z
dc.date.issued2020-03
dc.identifier.citationJabehdar Maralani, Pejman; Schieda, Nicola; Hecht, Elizabeth M.; Litt, Harold; Hindman, Nicole; Heyn, Chinthaka; Davenport, Matthew S.; Zaharchuk, Greg; Hess, Christopher P.; Weinreb, Jeffrey (2020). "MRI safety and devices: An update and expert consensus." Journal of Magnetic Resonance Imaging 51(3): 657-674.
dc.identifier.issn1053-1807
dc.identifier.issn1522-2586
dc.identifier.urihttps://hdl.handle.net/2027.42/154533
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othersafety
dc.subject.otherMRI
dc.subject.othermedical devices
dc.titleMRI safety and devices: An update and expert consensus
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154533/1/jmri26909_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154533/2/jmri26909.pdf
dc.identifier.doi10.1002/jmri.26909
dc.identifier.sourceJournal of Magnetic Resonance Imaging
dc.identifier.citedreferenceShellock FG, John V. Crues I. MRI: Bioeffects, safety and patient management, 14th ed. Los Angeles, California: Biomedical Research Publishing; 2014.
dc.identifier.citedreferenceBandorski D, Kurniawan N, Baltes P, et al. Contraindications for video capsule endoscopy. World J Gastroenterol 2016; 22: 9898 – 9908.
dc.identifier.citedreferenceBussmann S, Luechinger R, Froehlich JM, et al. Safety of intrauterine devices in MRI. PLoS One 2018; 13: e0204220.
dc.identifier.citedreferenceNeumann W, Uhrig T, Malzacher M, Kossmann V, Schad LR, Zoellner FG. Risk assessment of copper‐containing contraceptives: The impact for women with implanted intrauterine devices during clinical MRI and CT examinations. Eur Radiol 2018 [Epub ahead of print].
dc.identifier.citedreferenceZieman M, Kanal E. Copper T 380A IUD and magnetic resonance imaging. Contraception 2007; 75: 93 – 95.
dc.identifier.citedreferenceNadgir A, Beere D, Barker K. Intrauterine fragmentation of Gyne T380: An uncommon complication. BMJ Sex Reprod Health 2004; 30: 175 – 176.
dc.identifier.citedreferenceShellock FG. New metallic implant used for permanent contraception in women: Evaluation of MR safety. Am J Roentgenol 2002; 178: 1513 – 1516.
dc.identifier.citedreferenceEshed I, Kushnir T, Shabshin N, Konen E. Is magnetic resonance imaging safe for patients with retained metal fragments from combat and terrorist attacks? Acta Radiol 2010; 51: 170 – 174.
dc.identifier.citedreferenceDiallo I, Auffret M, Attar L, Bouvard E, Rousset J, Ben Salem D. Magnetic field interactions of military and law enforcement bullets at 1.5 and 3 Tesla. Mil Med 2016; 181: 710 – 713.
dc.identifier.citedreferenceTeitelbaum GP, Yee CA, Van Horn DD, Kim HS, Colletti PM. Metallic ballistic fragments: MR imaging safety and artifacts. Radiology 1990; 175: 855 – 859.
dc.identifier.citedreferenceEggert S, Kubik‐Huch RA, Lory M, et al. The influence of 1.5 and 3 T magnetic resonance unit magnetic fields on the movement of steel‐jacketed projectiles in ordnance gelatin. Forensic Sci Med Pathol 2015; 11: 544 – 551.
dc.identifier.citedreferenceKaracozoff AM, Pekmezci M, Shellock FG. Armor‐piercing bullet: 3‐T MRI findings and identification by a ferromagnetic detection system. Mil Med 2013; 178: e380 – 385.
dc.identifier.citedreferenceDedini RD, Karacozoff AM, Shellock FG, Xu D, McClellan RT, Pekmezci M. MRI issues for ballistic objects: Information obtained at 1.5‐, 3‐ and 7‐Tesla. Spine J 2013; 13: 815 – 822.
dc.identifier.citedreferenceSmith AS, Hurst GC, Duerk JL, Diaz PJ. MR of ballistic materials: Imaging artifacts and potential hazards. AJNR Am J Neuroradiol 1991; 12: 567 – 572.
dc.identifier.citedreferenceHess U, Harms J, Schneider A, Schleef M, Ganter C, Hannig C. Assessment of gunshot bullet injuries with the use of magnetic resonance imaging. J Trauma 2000; 49: 704 – 709.
dc.identifier.citedreferenceSmugar SS, Schweitzer ME, Hume E. MRI in patients with intraspinal bullets. J Magn Reson Imaging 1999; 9: 151 – 153.
dc.identifier.citedreferenceSlavin J, Beaty N, Raghavan P, Sansur C, Aarabi B. Magnetic resonance imaging to evaluate cervical spinal cord injury from gunshot wounds from handguns. World Neurosurg 2015; 84: 1916 – 1922.
dc.identifier.citedreferenceEggert S, Kubik‐Huch RA, Klarhofer M, et al. Fairly direct hit! Advances in imaging of shotgun projectiles in MRI. Eur Radiol 2015; 25: 2745 – 2753.
dc.identifier.citedreferenceShellock FG, Karacozoff AM. Detection of implants and other objects using a ferromagnetic detection system: Implications for patient screening before MRI. AJR Am J Roentgenol 2013; 201: 720 – 725.
dc.identifier.citedreferenceWilliamson MR, Espinosa MC, Boutin RD, Orrison WW Jr, Hart BL, Kelsey CA. Metallic foreign bodies in the orbits of patients undergoing MR imaging: Prevalence and value of radiography and CT before MR. AJR Am J Roentgenol 1994; 162: 981 – 983.
dc.identifier.citedreferenceKelly WM, Paglen PG, Pearson JA, San Diego AG, Soloman MA. Ferromagnetism of intraocular foreign body causes unilateral blindness after MR study. AJNR Am Neuroradiol 1986; 7: 243 – 245.
dc.identifier.citedreferenceLawrence DA, Lipman AT, Gupta SK, Nacey NC. Undetected intraocular metallic foreign body causing hyphema in a patient undergoing MRI: A rare occurrence demonstrating the limitations of pre‐MRI safety screening. Magn Reson Imaging 2015; 33: 358 – 361.
dc.identifier.citedreferenceTa CN, Bowman RW. Hyphema caused by a metallic intraocular foreign body during magnetic resonance imaging. Am J Ophthalmol 2000; 129: 533 – 534.
dc.identifier.citedreferenceVote BJ, Simpson AJ. X‐ray turns a blind eye to ferrous metal. Clin Exp Ophthalmol 2001; 29: 262 – 264.
dc.identifier.citedreferencePlatt AS, Wajda BG, Ingram AD, Wei XC, Ells AL. Metallic intraocular foreign body as detected by magnetic resonance imaging without complications — A case report. Am J Ophthalmol Case Rep 2017; 7: 76 – 79.
dc.identifier.citedreferenceZhang Y, Cheng J, Bai J, et al. Tiny ferromagnetic intraocular foreign bodies detected by magnetic resonance imaging: A report of two cases. J Magn Reson Imaging 2009; 29: 704 – 707.
dc.identifier.citedreferenceMurphy M, Black N, Lamping D, et al. Consensus development methods, and their use in clinical guideline development. Health Technol Assess 1998; 2: i – 88.
dc.identifier.citedreferenceOECD ( 2019 ). Magnetic resonance imaging (MRI) exams (indicator). https://doi.org/10.1787/1d89353f-en
dc.identifier.citedreferenceShellock FG, Crues JV. MR procedures: Biologic effects, safety, and patient care. Radiology 2004; 232: 635 – 652.
dc.identifier.citedreferenceShellock FG. Magnetic resonance safety update 2002: Implants and devices. J Magn Reson Imaging 2002; 16: 485 – 496.
dc.identifier.citedreferenceNyenhuis JA, Park S‐M, Kamondetdacha R, Amjad A, Shellock FG, Rezai AR. MRI and implanted medical devices: Basic interactions with an emphasis on heating. IEEE Trans Device Mater Reliab 2005; 5: 467 – 480.
dc.identifier.citedreferenceKanal E, Barkovich AJ, Bell C, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging 2013; 37: 501 – 530.
dc.identifier.citedreferenceMiller W, Noseworthy MD, Seely J, et al. CAR standard for magnetic resonance imaging. Available at: https://car.ca/wp-content/uploads/Magnetic-Resonance-Imaging-2011.pdf
dc.identifier.citedreferenceUnion TEPatCotE. Directive 2013/35/EU of the European Parliament and of the Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (20th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC) and repealing Directive 2004/40/EC. Official Journal of the European Union 2013. p 1 – 21.
dc.identifier.citedreferenceIndik JH, Gimbel JR, Abe H, et al. 2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm 2017; 14: e97 – e153.
dc.identifier.citedreferenceAnghelescu DL, Faughnan LG, Baker JN, Yang J, Kane JR. Use of epidural and peripheral nerve blocks at the end of life in children and young adults with cancer: The collaboration between a pain service and a palliative care service. Paediatr Anaesth 2010; 20: 1070 – 1077.
dc.identifier.citedreferenceToledano RD, Tsen LC. Epidural catheter design: History, innovations, and clinical implications. Anesthesiology 2014; 121: 9 – 17.
dc.identifier.citedreferenceShellock FG. Biomedical implants and devices: Assessment of magnetic field interactions with a 3.0‐Tesla MR system. J Magn Reson Imaging 2002; 16: 721 – 732.
dc.identifier.citedreferenceOwens S, Erturk MA, Ouanes JP, Murphy JD, Wu CL, Bottomley PA. Evaluation of epidural and peripheral nerve catheter heating during magnetic resonance imaging. Reg Anesth Pain Med 2014; 39: 534 – 539.
dc.identifier.citedreferenceStaats PS, Stinson MS, Lee RR. Lumbar stenosis complicating retained epidural catheter tip. Anesthesiology 1995; 83: 1115 – 1118.
dc.identifier.citedreferenceBlanchard N, Clabeau JJ, Ossart M, Dekens J, Legars D, Tchaoussoff J. Radicular pain due to a retained fragment of epidural catheter. Anesthesiology 1997; 87: 1567 – 1569.
dc.identifier.citedreferencePopping DM, Zahn PK, Van Aken HK, Dasch B, Boche R, Pogatzki‐Zahn EM. Effectiveness and safety of postoperative pain management: A survey of 18 925 consecutive patients between 1998 and 2006 (2nd revision): A database analysis of prospectively raised data. Br J Anaesth 2008; 101: 832 – 840.
dc.identifier.citedreferenceShellock FG. Reference manual for magnetic resonance safety, implants, and devices: 2019 ed.: Los Angeles, California: Biomedical Research Publishing Group; 2019.
dc.identifier.citedreferenceShellock FG, Audet‐Griffin AJ. Evaluation of magnetic resonance imaging issues for a wirelessly powered lead used for epidural, spinal cord stimulation. Neuromodulation 2014; 17: 334 – 339.
dc.identifier.citedreferenceMutter UM, Bellut D, Porchet F, Schuknecht B. Spinal magnetic resonance imaging with reduced specific absorption rate in patients harbouring a spinal cord stimulation device — A single‐centre prospective study analysing safety, tolerability and image quality. Acta Neurochir 2013; 155: 2327 – 2332.
dc.identifier.citedreferenceDe Andres J, Valia JC, Cerda‐Olmedo G, et al. Magnetic resonance imaging in patients with spinal neurostimulation systems. Anesthesiology 2007; 106: 779 – 786.
dc.identifier.citedreferenceShellock FG, Zare A, Ilfeld BM, Chae J, Strother RB. In vitro magnetic resonance imaging evaluation of fragmented, open‐coil, percutaneous peripheral nerve stimulation leads. Neuromodulation 2018; 21: 276 – 283.
dc.identifier.citedreferenceShellock FG, Begnaud J, Inman DM. Vagus nerve stimulation therapy system: in vitro evaluation of magnetic resonance imaging‐related heating and function at 1.5 and 3 Tesla. Neuromodulation 2006; 9: 204 – 213.
dc.identifier.citedreferencede Jonge JC, Melis GI, Gebbink TA, de Kort GA, Leijten FS. Safety of a dedicated brain MRI protocol in patients with a vagus nerve stimulator. Epilepsia 2014; 55: e112 – 115.
dc.identifier.citedreferenceGorny KR, Bernstein MA, Watson RE Jr. 3 Tesla MRI of patients with a vagus nerve stimulator: Initial experience using a T/R head coil under controlled conditions. J Magn Reson Imaging 2010; 31: 475 – 481.
dc.identifier.citedreferenceElkelini MS, Hassouna MM. Safety of MRI at 1.5Tesla in patients with implanted sacral nerve neurostimulator. Eur Urol 2006; 50: 311 – 316.
dc.identifier.citedreferenceGuzman‐Negron JM, Pizarro‐Berdichevsky J, Gill BC, Goldman HB. Can lumbosacral magnetic resonance imaging be performed safely in patients with a sacral neuromodulation device? An in vivo prospective study. J Urol 2018; 200: 1088 – 1092.
dc.identifier.citedreferenceTodt I, Tittel A, Ernst A, Mittmann P, Mutze S. Pain free 3 T MRI scans in cochlear implantees. Otol Neurotol 2017; 38: e401 – e404.
dc.identifier.citedreferenceMajdani O, Leinung M, Rau T, et al. Demagnetization of cochlear implants and temperature changes in 3.0 T MRI environment. Otolaryngol Head Neck Surg 2008; 139: 833 – 839.
dc.identifier.citedreferenceKim BG, Kim JW, Park JJ, Kim SH, Kim HN, Choi JY. Adverse events and discomfort during magnetic resonance imaging in cochlear implant recipients. JAMA Otolaryngol Head Neck Surg 2015; 141: 45 – 52.
dc.identifier.citedreferenceWalker B, Norton S, Phillips G, Christianson E, Horn D, Ou H. Comparison of MRI in pediatric cochlear implant recipients with and without retained magnet. Int J Pediatr Otorhinolaryngol 2018; 109: 44 – 49.
dc.identifier.citedreferenceYoung NM, Rojas C, Deng J, Burrowes D, Ryan M. Magnetic resonance imaging of cochlear implant recipients. Otol Neurotol 2016; 37: 665 – 671.
dc.identifier.citedreferenceTodt I, Rademacher G, Grupe G, et al. Cochlear implants and 1.5 T MRI scans: The effect of diametrically bipolar magnets and screw fixation on pain. J Otolaryngol Head Neck Surg 2018; 47: 11.
dc.identifier.citedreferenceVogl TJ. Differential diagnosis in head and neck imaging. Stuttgart, Germany: Thieme; 1998.
dc.identifier.citedreferenceWong K, Kozin ED, Kanumuri VV, et al. Auditory brainstem implants: Recent progress and future perspectives. Front Neurosci 2019; 13: 10.
dc.identifier.citedreferenceReiter MJ, Schwope RB, Kini JA, York GE, Suhr AW. Postoperative imaging of the orbital contents. Radiographics 2015; 35: 221 – 234.
dc.identifier.citedreferenceBakshandeh H, Shellock FG, Schatz CJ, Morisoli SM. Metallic clips used for scleral buckling: ex vivo evaluation of ferromagnetism at 1.5 T. J Magn Reson Imaging 1993; 3: 559.
dc.identifier.citedreferenceAlbert DW, Olson KR, Parel JM, Hernandez E, Lee W, Quencer R. Magnetic resonance imaging and retinal tacks. Arch Ophthalmol 1990; 108: 320 – 321.
dc.identifier.citedreferenceJoondeph BC, Peyman GA, Mafee MF, Joondeph HC. Magnetic resonance imaging and retinal tacks. Arch Ophthalmol 1987; 105: 1479 – 1480.
dc.identifier.citedreferenceda Cruz L, Dorn JD, Humayun MS, et al. Five‐year safety and performance results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology 2016; 123: 2248 – 2254.
dc.identifier.citedreferenceWeiland JD, Faraji B, Greenberg RJ, Humayun MS, Shellock FG. Assessment of MRI issues for the Argus II retinal prosthesis. Magn Reson Imaging 2012; 30: 382 – 389.
dc.identifier.citedreferenceBowen PK, Shearier ER, Zhao S, et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn‐alloys. Adv Healthc Mater 2016; 5: 1121 – 1140.
dc.identifier.citedreferenceShellock FG, Forder JR. Drug eluting coronary stent: in vitro evaluation of magnet resonance safety at 3 Tesla. J Cardiovasc Magn Reson 2005; 7: 415 – 419.
dc.identifier.citedreferenceLevine GN, Gomes AS, Arai AE, et al. Safety of magnetic resonance imaging in patients with cardiovascular devices: An American Heart Association scientific statement from the Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Council on Cardiovascular Radiology and Intervention: Endorsed by the American College of Cardiology Foundation, the North American Society for Cardiac Imaging, and the Society for Cardiovascular Magnetic Resonance. Circulation 2007; 116: 2878 – 2891.
dc.identifier.citedreferenceBaikoussis NG, Apostolakis E, Papakonstantinou NA, Sarantitis I, Dougenis D. Safety of magnetic resonance imaging in patients with implanted cardiac prostheses and metallic cardiovascular electronic devices. Ann Thorac Surg 2011; 91: 2006 – 2011.
dc.identifier.citedreferenceShellock FG, Shellock VJ. Metallic stents: Evaluation of MR imaging safety. AJR Am J Roentgenol 1999; 173: 543 – 547.
dc.identifier.citedreferenceHundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation 2010; 121: 2462 – 2508.
dc.identifier.citedreferenceHug J, Nagel E, Bornstedt A, Schnackenburg B, Oswald H, Fleck E. Coronary arterial stents: Safety and artifacts during MR imaging. Radiology 2000; 216: 781 – 787.
dc.identifier.citedreferenceSyed MA, Carlson K, Murphy M, Ingkanisorn WP, Rhoads KL, Arai AE. Long‐term safety of cardiac magnetic resonance imaging performed in the first few days after bare‐metal stent implantation. J Magn Reson Imaging 2006; 24: 1056 – 1061.
dc.identifier.citedreferenceGerber TC, Fasseas P, Lennon RJ, et al. Clinical safety of magnetic resonance imaging early after coronary artery stent placement. J Am Coll Cardiol 2003; 42: 1295 – 1298.
dc.identifier.citedreferencePorto I, Selvanayagam J, Ashar V, Neubauer S, Banning AP. Safety of magnetic resonance imaging one to three days after bare metal and drug‐eluting stent implantation. Am J Cardiol 2005; 96: 366 – 368.
dc.identifier.citedreferencePatel MR, Albert TS, Kandzari DE, et al. Acute myocardial infarction: Safety of cardiac MR imaging after percutaneous revascularization with stents. Radiology 2006; 240: 674 – 680.
dc.identifier.citedreferenceNazarian S, Reynolds MR, Ryan MP, Wolff SD, Mollenkopf SA, Turakhia MP. Utilization and likelihood of radiologic diagnostic imaging in patients with implantable cardiac defibrillators. J Magn Reson Imaging 2016; 43: 115 – 127.
dc.identifier.citedreferenceCohen JD, Costa HS, Russo RJ. Determining the risks of magnetic resonance imaging at 1.5 Tesla for patients with pacemakers and implantable cardioverter defibrillators. Am J Cardiol 2012; 110: 1631 – 1636.
dc.identifier.citedreferenceHiggins JV, Sheldon SH, Watson RE Jr, et al. "Power‐on resets" in cardiac implantable electronic devices during magnetic resonance imaging. Heart Rhythm 2015; 12: 540 – 544.
dc.identifier.citedreferenceGold MR, Kanal E, Schwitter J, et al. Preclinical evaluation of implantable cardioverter‐defibrillator developed for magnetic resonance imaging use. Heart Rhythm 2015; 12: 631 – 638.
dc.identifier.citedreferenceIrnich W, Irnich B, Bartsch C, Stertmann WA, Gufler H, Weiler G. Do we need pacemakers resistant to magnetic resonance imaging? Europace 2005; 7: 353 – 365.
dc.identifier.citedreferenceRusso RJ, Costa HS, Silva PD, et al. Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N Engl J Med 2017; 376: 755 – 764.
dc.identifier.citedreferenceNazarian S, Hansford R, Rahsepar AA, et al. Safety of magnetic resonance imaging in patients with cardiac devices. N Engl J Med 2017; 377: 2555 – 2564.
dc.identifier.citedreferenceJensen TS, Chin J, Ashby L, et al. Decision memo for magnetic resonance imaging (MRI) (CAG‐00399R4); Centers for Medicare & Medicaid Services (CMS) 2018.
dc.identifier.citedreferenceBatra AS, Balaji S. Post operative temporary epicardial pacing: When, how and why? Ann Pediatr Cardiol 2008; 1: 120 – 125.
dc.identifier.citedreferenceKanal E. Safety of MR imaging in patients with retained epicardial pacer wires. AJR Am J Roentgenol 1998; 170: 213 – 214.
dc.identifier.citedreferenceHartnell GG, Spence L, Hughes LA, Cohen MC, Saouaf R, Buff B. Safety of MR imaging in patients who have retained metallic materials after cardiac surgery. AJR Am J Roentgenol 1997; 168: 1157 – 1159.
dc.identifier.citedreferenceLuechinger R, Duru F, Scheidegger MB, Boesiger P, Candinas R. Force and torque effects of a 1.5‐Tesla MRI scanner on cardiac pacemakers and ICDs. Pacing Clin Electrophysiol 2001; 24: 199 – 205.
dc.identifier.citedreferencePfeil A, Drobnik S, Rzanny R, et al. Compatibility of temporary pacemaker myocardial pacing leads with magnetic resonance imaging: An ex vivo tissue study. Int J Cardiovasc Imaging 2012; 28: 317 – 326.
dc.identifier.citedreferenceLangman DA, Goldberg IB, Finn JP, Ennis DB. Pacemaker lead tip heating in abandoned and pacemaker‐attached leads at 1.5 Tesla MRI. J Magn Reson Imaging 2011; 33: 426 – 431.
dc.identifier.citedreferencePulver AF, Puchalski MD, Bradley DJ, et al. Safety and imaging quality of MRI in pediatric and adult congenital heart disease patients with pacemakers. Pacing Clin Electrophysiol 2009; 32: 450 – 456.
dc.identifier.citedreferenceIrnich W. Re: Cardiac pacemakers in electric and magnetic fields of 400‐kV power lines. Pacing Clin Electrophysiol 2013; 36: 266.
dc.identifier.citedreferenceHiggins JV, Gard JJ, Sheldon SH, et al. Safety and outcomes of magnetic resonance imaging in patients with abandoned pacemaker and defibrillator leads. Pacing Clin Electrophysiol 2014; 37: 1284 – 1290.
dc.identifier.citedreferenceHorwood L, Attili A, Luba F, et al. Magnetic resonance imaging in patients with cardiac implanted electronic devices: Focus on contraindications to magnetic resonance imaging protocols. Europace 2017; 19: 812 – 817.
dc.identifier.citedreferencePadmanabhan D, Kella DK, Mehta R, et al. Safety of magnetic resonance imaging in patients with legacy pacemakers and defibrillators and abandoned leads. Heart Rhythm 2018; 15: 228 – 233.
dc.identifier.citedreferenceShin EJ, Ko CW, Magno P, et al. Comparative study of endoscopic clips: Duration of attachment at the site of clip application. Gastrointest Endosc 2007; 66: 757 – 761.
dc.identifier.citedreferenceAccorsi F, Coutu G, Simms EL, Lalonde A, Leswick DA. Endoscopic clip MRI screening: A Canada‐wide policy survey. AJR Am J Roentgenol 2017; 209: 130 – 135.
dc.identifier.citedreferenceKurt M, Posul E, Tekelioglu V, Yilmaz B, Korkmaz U, Kizildag B. Are MR compatible hemoclips safe after control of hemostasis? Endoscopy 2014; 46: E471 – E471.
dc.identifier.citedreferenceOlmez S, Ozaslan E, Avcioglu U. Hemoclip retained for more than 2 years. Endoscopy 2012; 44 ( Suppl 2 )UCTN: E323 – 324.
dc.identifier.citedreferenceMavrogenis G, Del Natale M. Hemostatic clips and magnetic resonance imaging. Are there any compatibility issues? Endoscopy 2013; 45: 933.
dc.identifier.citedreferenceEnns RA, Hookey L, Armstrong D, et al. Clinical practice guidelines for the use of video capsule endoscopy. Gastroenterology 2017; 152: 497 – 514.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.