Show simple item record

Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule

dc.contributor.authorTakemoto, Yoshio
dc.contributor.authorSlough, Diana P.
dc.contributor.authorMeinke, Gretchen
dc.contributor.authorKatnik, Christopher
dc.contributor.authorGraziano, Zachary A.
dc.contributor.authorChidipi, Bojjibabu
dc.contributor.authorReiser, Michelle
dc.contributor.authorAlhadidy, Mohammed M.
dc.contributor.authorRamirez, Rafael
dc.contributor.authorSalvador‐montañés, Oscar
dc.contributor.authorEnnis, Steven
dc.contributor.authorGuerrero‐serna, Guadalupe
dc.contributor.authorHaburcak, Marian
dc.contributor.authorDiehl, Carl
dc.contributor.authorCuevas, Javier
dc.contributor.authorJalife, Jose
dc.contributor.authorBohm, Andrew
dc.contributor.authorLin, Yu‐shan
dc.contributor.authorNoujaim, Sami F.
dc.date.accessioned2020-04-02T18:38:33Z
dc.date.available2020-04-02T18:38:33Z
dc.date.issued2018-04
dc.identifier.citationTakemoto, Yoshio; Slough, Diana P.; Meinke, Gretchen; Katnik, Christopher; Graziano, Zachary A.; Chidipi, Bojjibabu; Reiser, Michelle; Alhadidy, Mohammed M.; Ramirez, Rafael; Salvador‐montañés, Oscar ; Ennis, Steven; Guerrero‐serna, Guadalupe ; Haburcak, Marian; Diehl, Carl; Cuevas, Javier; Jalife, Jose; Bohm, Andrew; Lin, Yu‐shan ; Noujaim, Sami F. (2018). "Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule." The FASEB Journal 32(4): 1778-1793.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154620
dc.publisherFederation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherIKACh
dc.subject.otherpotassium inward rectifier
dc.subject.otheratrial fibrillation
dc.titleStructural basis for the antiarrhythmic blockade of a potassium channel with a small molecule
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154620/1/fsb2fj201700349r.pdf
dc.identifier.doi10.1096/fj.201700349R
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. ( 2009 ) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785 - 2791
dc.identifier.citedreferenceOsawa, M., Yokogawa, M., Muramatsu, T., Kimura, T., Mase, Y., and Shimada, I. ( 2009 ) Evidence for the direct interaction of spermine with the inwardly rectifying potassium channel. J. Biol. Chem. 284, 26117 - 26126
dc.identifier.citedreferenceNishida, M., Cadene, M., Chait, B. T., and MacKinnon, R. ( 2007 ) CrystalstructureofaKir3.1- prokaryoticKirchannelchimera. EMBO J. 26, 4005 - 4015
dc.identifier.citedreferencePegan, S., Arrabit, C., Zhou, W., Kwiatkowski, W., Collins, A., Slesinger, P. A., and Choe, S. ( 2005 ) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat. Neurosci. 8, 279 - 287
dc.identifier.citedreferenceYokogawa, M., Muramatsu, T., Takeuchi, K., Osawa, M., and Shimada, I. ( 2009 ) Backbone resonance assignments for the cytoplasmic regionsofGprotein- activatedinwardlyrectifyingpotassiumchannel1 (GIRK1). Biomol. NMR Assign. 3, 125 - 128
dc.identifier.citedreferenceDelaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. ( 1995 ) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277 - 293
dc.identifier.citedreferenceVranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L., Ionides, J., and Laue, E. D. ( 2005 ) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687 - 696
dc.identifier.citedreferenceOtwinowski, Z., and Minor, W. ( 1997 ) Processing of X- ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307 - 326
dc.identifier.citedreferenceMcCoy, A. J., Grosse- Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. ( 2007 ) Phaser crystallographic software. J. Appl. Cryst. 40, 658 - 674
dc.identifier.citedreferenceWinn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S. ( 2011 ) Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235 - 242
dc.identifier.citedreferenceMurshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., and Vagin, A. A. ( 2011 ) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355 - 367
dc.identifier.citedreferenceAdams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse- Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. ( 2010 ) PHENIX: a comprehensive Python- based system for macro- molecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213 - 221
dc.identifier.citedreferenceEmsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. ( 2010 ) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486 - 501
dc.identifier.citedreferenceJoosten, R. P., Long, F., Murshudov, G. N., and Perrakis, A. ( 2014 ) The PDB_REDO server for macromolecular structure model optimization. IUCr J 1, 213 - 220
dc.identifier.citedreferenceKrissinel, E., and Henrick, K. ( 2004 ) Secondary- structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256 - 2268
dc.identifier.citedreferenceWishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., and Hassanali, M. ( 2008 ) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901 - D906
dc.identifier.citedreferenceSastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., and Sherman, W. ( 2013 ) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221 - 234
dc.identifier.citedreferenceGreenwood, J. R., Calkins, D., Sullivan, A. P., and Shelley, J. C. ( 2010 ) Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug- like molecules in aqueous solution. J. Comput. Aided Mol. Des. 24, 591 - 604
dc.identifier.citedreferenceShelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., and Uchimaya, M. ( 2007 ) Epik: a software program for pK(a) prediction and protonation state generation for drug- like molecules. J. Comput. Aided Mol. Des. 21, 681 - 691
dc.identifier.citedreferenceShivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., and Sherman, W. ( 2010 ) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 6, 1509 - 1519
dc.identifier.citedreferenceIijima, H., Dunbar, J. B., Jr., and Marshall, G. R. ( 1987 ) Calibration of effective van der Waals atomic contact radii for proteins and peptides. Proteins 2, 330 - 339
dc.identifier.citedreferenceMähler, J., and Persson, I. ( 2012 ) A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 51, 425 - 438
dc.identifier.citedreferenceNoujaim, S. F., Stuckey, J. A., Ponce- Balbuena, D., Ferrer- Villada, T., López- Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Chapula, J. A., and Jalife, J. ( 2010 ) Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. FASEB J. 24, 4302 - 4312
dc.identifier.citedreferenceLi, D., Chen, R., and Chung, S. H. ( 2016 ) Molecular dynamics of the honey bee toxin tertiapin binding to Kir3.2. Biophys. Chem. 219, 43 - 48
dc.identifier.citedreferenceWhorton, M. R., and MacKinnon, R. ( 2011 ) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147, 199 - 208
dc.identifier.citedreferenceRodríguez- Menchaca, A. A., Navarro- Polanco, R. A., Ferrer- Villada, T., Rupp, J., Sachse, F. B., Tristani- Firouzi, M., and Sánchez- Chapula, J. A. ( 2008 ) The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc. Natl. Acad. Sci. USA 105, 1364 - 1368
dc.identifier.citedreferenceBurrell, Z. L., Jr., and Martinez, A. C. ( 1958 ) Chloroquine and hydroxychloroquine in the treatment of cardiac arrhythmias. N. Engl. J. Med. 258, 798 - 800
dc.identifier.citedreferenceSánchez- Chapula, J. A., Salinas- Stefanon, E., Torres- Jácome, J., Benavides- Haro, D. E., and Navarro- Polanco, R. A. ( 2001 ) Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes. J. Pharmacol. Exp. Ther. 297, 437 - 445
dc.identifier.citedreferenceWalker, O., Dawodu, A. H., Adeyokunnu, A. A., Salako, L. A., and Alvan, G. ( 1983 ) Plasma chloroquine and desethylchloroquine concentrations in children during and after chloroquine treatment for malaria. Br. J. Clin. Pharmacol. 16, 701 - 705
dc.identifier.citedreferenceNoujaim, S. F., Stuckey, J. A., Ponce- Balbuena, D., Ferrer- Villada, T., López- Izquierdo, A., Pandit, S. V., Sánchez- Chapula, J. A., and Jalife, J. ( 2011 ) Structural bases for the different anti- fibrillatory effects of chloroquine and quinidine. Cardiovasc. Res. 89, 862 - 869
dc.identifier.citedreferenceVoigt, N., Rozmaritsa, N., Trausch, A., Zimniak, T., Christ, T., Wettwer, E., Matschke, K., Dobrev, D., and Ravens, U. ( 2010 ) Inhibition of IK, ACh current may contribute to clinical efficacy of class I and class III antiarrhythmic drugs in patients with atrial fibrillation. Naunyn Schmiedebergs Arch. Pharmacol. 381, 251 - 259
dc.identifier.citedreferenceFerrari, R., Bertini, M., Blomstrom- Lundqvist, C., Dobrev, D., Kirchhof, P., Pappone, C., Ravens, U., Tamargo, J., Tavazzi, L., and Vicedomini, G. G. ( 2016 ) An update on atrial fibrillation in 2014: from pathophysiology to treatment. Int. J. Cardiol. 203, 22 - 29
dc.identifier.citedreferencePodd, S. J., Freemantle, N., Furniss, S. S., and Sulke, N. ( 2016 ) First clinical trial of specific IKACh blocker shows no reduction in atrial fibrillation burden in patients with paroxysmal atrial fibrillation: pacemaker assessment of BMS 914392 in patients with paroxysmal atrial fibrillation. Europace 18, 340 - 346
dc.identifier.citedreferenceWalfridsson, H., Anfinsen, O. G., Berggren, A., Frison, L., Jensen, S., Linhardt, G., Nordkam, A. C., Sundqvist, M., and Carlsson, L. ( 2015 ) Is the acetylcholine- regulated inwardly rectifying potassium current a viable antiarrhythmic target? Translational discrepancies of AZD2927 and A7071 in dogs and humans. Europace 17, 473 - 482
dc.identifier.citedreferenceVoigt, N., Friedrich, A., Bock, M., Wettwer, E., Christ, T., Knaut, M., Strasser, R. H., Ravens, U., and Dobrev, D. ( 2007 ) Differential phosphorylation- dependent regulation of constitutively active and muscarinic receptor- activated IK, ACh channels in patients with chronic atrial fibrillation. Cardiovasc. Res. 74, 426 - 437
dc.identifier.citedreferenceOlshansky, B. ( 2004 ) Combining ablation of atrial fibrillation with ablation of atrial flutter: are we there yet? J. Am. Coll. Cardiol. 43, 2063 - 2065
dc.identifier.citedreferenceNattel, S., and Dobrev, D. ( 2016 ) Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation. Nat. Rev. Cardiol. 13, 575 - 590
dc.identifier.citedreferenceDobrev, D., Friedrich, A., Voigt, N., Jost, N., Wettwer, E., Christ, T., Knaut, M., and Ravens, U. ( 2005 ) The G protein- gated potassium current I (K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation 112, 3697 - 3706
dc.identifier.citedreferenceWakili, R., Voigt, N., Kaab, S., Dobrev, D., and Nattel, S. ( 2011 ) Recent advances in the molecular pathophysiology of atrial fibrillation. J. Clin. Invest. 121, 2955 - 2968
dc.identifier.citedreferenceMakary, S., Voigt, N., Maguy, A., Wakili, R., Nishida, K., Harada, M., Dobrev, D., and Nattel, S. ( 2011 ) Differential protein kinase C isoform regulation and increased constitutive activity of acetylcholine- regulated potassium channels in atrial remodeling. Circ. Res. 109, 1031 - 1043
dc.identifier.citedreferenceDobrev, D., Carlsson, L., and Nattel, S. ( 2012 ) Novelmoleculartargets for atrial fibrillation therapy. Nat. Rev. Drug Discov. 11, 275 - 291
dc.identifier.citedreferenceVoigt, N., Trausch, A., Knaut, M., Matschke, K., Varró, A., Van Wagoner, D. R., Nattel, S., Ravens, U., and Dobrev, D. ( 2010 ) Left- to- right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 3, 472 - 480
dc.identifier.citedreferenceHibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I., and Kurachi, Y. ( 2010 ) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol. Rev. 90, 291 - 366
dc.identifier.citedreferenceKurachi, Y., and Ishii, M. ( 2004 ) Cell signal control of the G protein- gated potassium channel and its subcellular localization. J. Physiol. 554, 285 - 294
dc.identifier.citedreferenceIvanina, T., Rishal, I., Varon, D., Mullner, C., Frohnwieser- Steinecke, B., Schreibmayer, W., Dessauer, C. W., and Dascal, N. ( 2003 ) Mapping the Gbetagamma- binding sites in GIRK1 and GIRK2 subunits of the G protein- activated K+ channel. J. Biol. Chem. 278, 29174 - 29183
dc.identifier.citedreferenceLogothetis, D. E., Lupyan, D., and Rosenhouse- Dantsker, A. ( 2007 ) Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J. Physiol. 582, 953 - 965
dc.identifier.citedreferenceNoujaim, S. F., Pandit, S. V., Berenfeld, O., Vikstrom, K., Cerrone, M., Mironov, S., Zugermayr, M., Lopatin, A. N., and Jalife, J. ( 2007 ) Upregulation of the inward rectifier K+ current (I K1) in the mouse heart accelerates and stabilizes rotors. J. Physiol. 578, 315 - 326
dc.identifier.citedreferenceAtienza, F., Almendral, J., Moreno, J., Vaidyanathan, R., Talkachou, A., Kalifa, J., Arenal, A., Villacastín, J. P., Torrecilla, E. G., Sánchez, A., Ploutz- Snyder, R., Jalife, J., and Berenfeld, O. ( 2006 ) Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114, 2434 - 2442
dc.identifier.citedreferenceDobrev, D., and Nattel, S. ( 2010 ) New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet 375, 1212 - 1223
dc.identifier.citedreferenceDobrev, D., and Nattel, S. ( 2011 ) Newinsightsinto the molecular basis of atrial fibrillation: mechanistic and therapeutic implications. Cardiovasc. Res. 89, 689 - 691
dc.identifier.citedreferenceRamu, Y., Klem, A. M., and Lu, Z. ( 2004 ) Short variable sequence acquired in evolution enables selective inhibition of various inward- rectifier K+ channels. Biochemistry 43, 10701 - 10709
dc.identifier.citedreferenceHumphrey, W., Dalke, A., and Schulten, K. ( 1996 ) VMD: visual molecular dynamics. J. Mol. Graph. 14, 33 - 38, 27- 28
dc.identifier.citedreferenceTakemoto, Y., Ramirez, R. J., Yokokawa, M., Kaur, K., Ponce- Balbuena, D., Sinno, M. C., Willis, B. C., Ghanbari, H., Ennis, S. R., Guerrero- Serna, G., Henzi, B. C., Latchamsetty, R., Ramos- Mondragon, R., Musa, H., Martins, R. P., Pandit, S. V., Noujaim, S. F., Crawford, T., Jongnarangsin, K., Pelosi, F., Bogun, F., Chugh, A., Berenfeld, O., Morady, F., Oral, H., and Jalife, J. ( 2016 ) Galectin- 3 regulates atrial fibrillation remodeling and predicts catheter ablation outcomes. JACC Basic Transl. Sci. 1, 143 - 154
dc.identifier.citedreferenceMartins, R. P., Kaur, K., Hwang, E., Ramirez, R. J., Willis, B. C., Filgueiras- Rama, D., Ennis, S. R., Takemoto, Y., Ponce- Balbuena, D., Zarzoso, M., O’Connell, R. P., Musa, H., Guerrero- Serna, G., Avula, U. M., Swartz, M. F., Bhushal, S., Deo, M., Pandit, S. V., Berenfeld, O., and Jalife, J. ( 2014 ) Dominant frequency increase rate predicts transition from paroxysmal to long- term persistent atrial fibrillation. Circulation 129, 1472 - 1482
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.