Show simple item record

Quantifying Losses and Assessing the Photovoltage Limits in Metal–Insulator–Semiconductor Water Splitting Systems

dc.contributor.authorHemmerling, John
dc.contributor.authorQuinn, Joseph
dc.contributor.authorLinic, Suljo
dc.date.accessioned2020-04-02T18:38:55Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-04-02T18:38:55Z
dc.date.issued2020-03
dc.identifier.citationHemmerling, John; Quinn, Joseph; Linic, Suljo (2020). "Quantifying Losses and Assessing the Photovoltage Limits in Metal–Insulator–Semiconductor Water Splitting Systems." Advanced Energy Materials 10(12): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/154631
dc.description.abstractMetal–insulator–semiconductor (MIS) photo‐electrocatalysts offer a pathway to stable and efficient solar water splitting. Initially motivated as a strategy to protect the underlying semiconductor photoabsorber from harsh operating conditions, the thickness of the insulator layer in MIS systems has recently been shown to be a critical design parameter which can be tuned to optimize the photovoltage. This study analyzes the underlying mechanism by which the thickness of the insulator layer impacts the performance of MIS photo‐electrocatalysts. A concrete example of an Ir/HfO2/n‐Si MIS system is investigated for the oxygen evolution reaction. The results of combined experiments and modeling suggest that the insulator thickness affects the photovoltage i) favorably by controlling the flux of charge carriers from the semiconductor to the metal electrocatalyst and ii) adversely by introducing nonidealities such as surface defect states which limit the generated photovoltage. It is important to quantify these different mechanisms and suggest avenues for addressing these nonidealities to enable the rational design of MIS systems that can approach the fundamental photovoltage limits. The analysis described in this contribution as well as the strategy toward optimizing the photovoltage are generalizable to other MIS systems.The competing roles of the insulator layer in metal–insulator–semiconductor water splitting systems are quantitatively explored. Nonidealities such as defects at interfaces significantly limit the photovoltage generated by these systems. Removing these nonidealities and engineering insulators with better selectivity for charge carriers are suggested as critical strategies toward approaching the fundamental photovoltage limits for efficient and stable solar water splitting.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherideality factor
dc.subject.othersolar water splitting
dc.subject.otherphotovoltage
dc.subject.otherphoto‐electrochemistry
dc.subject.othermetal–insulator–semiconductor junction
dc.titleQuantifying Losses and Assessing the Photovoltage Limits in Metal–Insulator–Semiconductor Water Splitting Systems
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154631/1/aenm201903354_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154631/2/aenm201903354-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154631/3/aenm201903354.pdf
dc.identifier.doi10.1002/aenm.201903354
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceJ. Quinn, J. Hemmerling, S. Linic, ACS Catal. 2018, 8, 8545.
dc.identifier.citedreferenceR. Gao, D. Yan, Adv. Energy Mater. 2019, 0, 1900954.
dc.identifier.citedreferenceD. B. Ingram, S. Linic, J. Electrochem. Soc. 2009, 156, B1457.
dc.identifier.citedreferenceA. G. Scheuermann, K. W. Kemp, K. Tang, D. Q. Lu, P. F. Satterthwaite, T. Ito, C. E. D. Chidsey, P. C. McIntyre, Energy Environ. Sci. 2016, 9, 504.
dc.identifier.citedreferenceS. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005.
dc.identifier.citedreferenceY. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, P. C. McIntyre, Nat. Mater. 2011, 10, 539.
dc.identifier.citedreferenceA. G. Scheuermann, J. P. Lawrence, A. C. Meng, K. Tang, O. L. Hendricks, C. E. D. Chidsey, P. C. McIntyre, ACS Appl. Mater. Interfaces 2016, 8, 14596.
dc.identifier.citedreferenceA. G. Scheuermann, J. P. Lawrence, K. W. Kemp, T. Ito, A. Walsh, C. E. D. Chidsey, P. K. Hurley, P. C. McIntyre, Nat. Mater. 2016, 15, 99.
dc.identifier.citedreferenceM. T. McDowell, M. F. Lichterman, A. I. Carim, R. Liu, S. Hu, B. S. Brunschwig, N. S. Lewis, ACS Appl. Mater. Interfaces 2015, 7, 15189.
dc.identifier.citedreferenceJ. Mukherjee, S. Linic, J. Electrochem. Soc. 2007, 154, B919.
dc.identifier.citedreferenceJ. Quinn, J. Hemmerling, S. Linic, ACS Energy Lett. 2019, 4, 2632.
dc.identifier.citedreferenceM.‐J. Park, J.‐Y. Jung, S.‐M. Shin, J.‐W. Song, Y.‐H. Nam, D.‐H. Kim, J.‐H. Lee, Thin Solid Films 2016, 599, 54.
dc.identifier.citedreferenceI. A. Digdaya, G. W. P. Adhyaksa, B. J. Trześniewski, E. C. Garnett, W. A. Smith, Nat. Commun. 2017, 8, 15968.
dc.identifier.citedreferenceI. A. Digdaya, B. J. Trześniewski, G. W. P. Adhyaksa, E. C. Garnett, W. A. Smith, J. Phys. Chem. C 2018, 122, 5462.
dc.identifier.citedreferenceZ. Luo, B. Liu, H. Li, X. Chang, W. Zhu, T. Wang, J. Gong, Small Methods 2019, 3, 1900212.
dc.identifier.citedreferenceL. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, E. T. Yu, Nat. Nanotechnol. 2015, 10, 84.
dc.identifier.citedreferenceQ. Cai, W. Hong, C. Jian, J. Li, W. Liu, ACS Catal. 2018, 8, 9238.
dc.identifier.citedreferenceA. G. Scheuermann, J. D. Prange, M. Gunji, C. E. D. Chidsey, P. C. McIntyre, Energy Environ. Sci. 2013, 6, 2487.
dc.identifier.citedreferenceZ. Ying, X. Yang, R. Tong, Q. Zhu, T. Chen, Z. He, H. Pan, ACS Appl. Energy Mater. 2019, 2, 6883.
dc.identifier.citedreferenceM. Ritala, M. Leskelä, Nanotechnology 1999, 10, 19.
dc.identifier.citedreferenceH. C. Card, E. H. Rhoderick, J. Phys. D: Appl. Phys. 1971, 4, 1589.
dc.identifier.citedreferenceL. F. Wagner, R. W. Young, A. Sugerman, IEEE Electron Device Lett. 1983, 4, 320.
dc.identifier.citedreferenceE. H. Rhoderick, IEE Proc., Part I: Solid‐State Electron Devices 1982, 129, 1.
dc.identifier.citedreferenceŞ. Altındal, S. Karadeniz, N. Tuğluoğlu, A. Tataroğlu, Solid‐State Electron. 2003, 47, 1847.
dc.identifier.citedreferenceI. Ohdomari, K. N. Tu, F. M. d’Heurle, T. S. Kuan, S. Petersson, Appl. Phys. Lett. 1978, 33, 1028.
dc.identifier.citedreferenceM. S. Prévot, K. Sivula, J. Phys. Chem. C 2013, 117, 17879.
dc.identifier.citedreferenceL. C. Seitz, Z. Chen, A. J. Forman, B. A. Pinaud, J. D. Benck, T. F. Jaramillo, ChemSusChem 2014, 7, 1372.
dc.identifier.citedreferenceY. Chen, S. Hu, C. Xiang, N. S. Lewis, Energy Environ. Sci. 2015, 8, 876.
dc.identifier.citedreferenceT. Wang, J. Gong, Angew. Chem., Int. Ed. 2015, 54, 10718.
dc.identifier.citedreferenceG. Loget, Curr. Opin. Colloid Interface Sci. 2019, 39, 40.
dc.identifier.citedreferenceZ. Luo, T. Wang, J. Gong, Chem. Soc. Rev. 2019, 48, 2158.
dc.identifier.citedreferenceR. Fan, Z. Mi, M. Shen, Opt. Express 2019, 27, A51.
dc.identifier.citedreferenceD. Zhang, J. Shi, W. Zi, P. Wang, S. (Frank) Liu, ChemSusChem 2017, 10, 4324.
dc.identifier.citedreferenceS. Oh, H. Song, J. Oh, Nano Lett. 2017, 17, 5416.
dc.identifier.citedreferenceB. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, J. R. Gong, Nano Lett. 2018, 18, 1516.
dc.identifier.citedreferenceS. Oh, J. Oh, J. Phys. Chem. C 2016, 120, 133.
dc.identifier.citedreferenceR. Fan, W. Dong, L. Fang, F. Zheng, M. Shen, J. Mater. Chem. A 2017, 5, 18744.
dc.identifier.citedreferenceB. Seger, T. Pedersen, A. B. Laursen, P. C. K. Vesborg, O. Hansen, I. Chorkendorff, J. Am. Chem. Soc. 2013, 135, 1057.
dc.identifier.citedreferenceF. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, J. Am. Chem. Soc. 2018, 140, 7748.
dc.identifier.citedreferenceH. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem 2010, 2, 724.
dc.identifier.citedreferenceJ. M. Foley, M. J. Price, J. I. Feldblyum, S. Maldonado, Energy Environ. Sci. 2012, 5, 5203.
dc.identifier.citedreferenceP. A. Hernley, S. A. Chavez, J. P. Quinn, S. Linic, ACS Photonics 2017, 4, 979.
dc.identifier.citedreferenceS. Chavez, U. Aslam, S. Linic, ACS Energy Lett. 2018, 3, 1590.
dc.identifier.citedreferenceP. A. Hernley, S. Linic, J. Phys. Chem. C 2018, 122, 24279.
dc.identifier.citedreferenceD. B. Ingram, S. Linic, J. Am. Chem. Soc. 2011, 133, 5202.
dc.identifier.citedreferenceS. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, N. C. Strandwitz, J. Phys. Chem. C 2015, 119, 24201.
dc.identifier.citedreferenceA. G. Scheuermann, P. C. McIntyre, J. Phys. Chem. Lett. 2016, 7, 2867.
dc.identifier.citedreferenceM. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, N. S. Lewis, Catal. Today 2016, 262, 11.
dc.identifier.citedreferenceD. Bae, B. Seger, P. C. K. Vesborg, O. Hansen, I. Chorkendorff, Chem. Soc. Rev. 2017, 46, 1933.
dc.identifier.citedreferenceM. Mikolasek, K. Frohlich, K. Husekova, J. Racko, V. Rehacek, F. Chymo, M. Tapajna, L. Harmatha, Appl. Surf. Sci. 2018, 461, 48.
dc.identifier.citedreferenceJ. C. Hill, A. T. Landers, J. A. Switzer, Nat. Mater. 2015, 14, 1150.
dc.identifier.citedreferenceO. L. Hendricks, R. Tang‐Kong, A. S. Babadi, P. C. McIntyre, C. E. D. Chidsey, Chem. Mater. 2019, 31, 90.
dc.identifier.citedreferenceS. Li, G. She, C. Chen, S. Zhang, L. Mu, X. Guo, W. Shi, ACS Appl. Mater. Interfaces 2018, 10, 8594.
dc.identifier.citedreferenceK. Oh, C. Mériadec, B. Lassalle‐Kaiser, V. Dorcet, B. Fabre, S. Ababou‐Girard, L. Joanny, F. Gouttefangeas, G. Loget, Energy Environ. Sci. 2018, 11, 2590.
dc.identifier.citedreferenceS. Oh, S. Jung, Y. H. Lee, J. T. Song, T. H. Kim, D. K. Nandi, S.‐H. Kim, J. Oh, ACS Catal. 2018, 8, 9755.
dc.identifier.citedreferenceS. A. Lee, T. H. Lee, C. Kim, M. G. Lee, M.‐J. Choi, H. Park, S. Choi, J. Oh, H. W. Jang, ACS Catal. 2018, 8, 7261.
dc.identifier.citedreferenceJ. Chen, G. Xu, C. Wang, K. Zhu, H. Wang, S. Yan, Z. Yu, Z. Zou, ChemCatChem 2018, 10, 5025.
dc.identifier.citedreferenceC. Li, M. Huang, Y. Zhong, L. Zhang, Y. Xiao, H. Zhu, Chem. Mater. 2019, 31, 171.
dc.identifier.citedreferenceD. V. Esposito, I. Levin, T. P. Moffat, A. A. Talin, Nat. Mater. 2013, 12, 562.
dc.identifier.citedreferenceM. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, H. Dai, Science 2013, 342, 836.
dc.identifier.citedreferenceL. Ji, H.‐Y. Hsu, X. Li, K. Huang, Y. Zhang, J. C. Lee, A. J. Bard, E. T. Yu, Nat. Mater. 2017, 16, 127.
dc.identifier.citedreferenceY. Li, G. Xu, X. Zhu, Z. Man, X. Fu, Z. Hao, Y. Cui, C. Yuan, W. Zhang, S. Yan, H. Ge, Y. Chen, Z. Zou, Appl. Catal., B 2019, 259, 118115.
dc.identifier.citedreferenceG. Loget, C. Mériadec, V. Dorcet, B. Fabre, A. Vacher, S. Fryars, S. Ababou‐Girard, Nat. Commun. 2019, 10, 3522.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.