Show simple item record

On the Spatial Distribution of Minor Species in Jupiter’s Troposphere as Inferred From Juno JIRAM Data

dc.contributor.authorGrassi, D.
dc.contributor.authorAdriani, A.
dc.contributor.authorMura, A.
dc.contributor.authorAtreya, S. K.
dc.contributor.authorFletcher, L. N.
dc.contributor.authorLunine, J. I.
dc.contributor.authorOrton, G. S.
dc.contributor.authorBolton, S.
dc.contributor.authorPlainaki, C.
dc.contributor.authorSindoni, G.
dc.contributor.authorAltieri, F.
dc.contributor.authorCicchetti, A.
dc.contributor.authorDinelli, B. M.
dc.contributor.authorFilacchione, G.
dc.contributor.authorMigliorini, A.
dc.contributor.authorMoriconi, M. L.
dc.contributor.authorNoschese, R.
dc.contributor.authorOlivieri, A.
dc.contributor.authorPiccioni, G.
dc.contributor.authorSordini, R.
dc.contributor.authorStefani, S.
dc.contributor.authorTosi, F.
dc.contributor.authorTurrini, D.
dc.date.accessioned2020-04-02T18:39:05Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-04-02T18:39:05Z
dc.date.issued2020-04
dc.identifier.citationGrassi, D.; Adriani, A.; Mura, A.; Atreya, S. K.; Fletcher, L. N.; Lunine, J. I.; Orton, G. S.; Bolton, S.; Plainaki, C.; Sindoni, G.; Altieri, F.; Cicchetti, A.; Dinelli, B. M.; Filacchione, G.; Migliorini, A.; Moriconi, M. L.; Noschese, R.; Olivieri, A.; Piccioni, G.; Sordini, R.; Stefani, S.; Tosi, F.; Turrini, D. (2020). "On the Spatial Distribution of Minor Species in Jupiter’s Troposphere as Inferred From Juno JIRAM Data." Journal of Geophysical Research: Planets 125(4): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/154637
dc.description.abstractThe spatial distribution of water, ammonia, phosphine, germane, and arsine in the Jupiter’s troposphere has been inferred from the Jovian Infrared Auroral Mapper (JIRAM) Juno data. Measurements allow us to retrieve the vertically averaged concentration of gases between ~3 and 5 bars from infrared‐bright spectra. Results were used to create latitudinal profiles. The water vapor relative humidity varies with latitude from <1% to over 15%. At intermediate latitudes (30–70°) the water vapor maxima are associated with the location of cyclonic belts, as inferred from mean zonal wind profiles (Porco et al., 2003). The high‐latitude regions (beyond 60°) are drier in the north (mean relative humidity around 2–3%) than the south, where humidity reaches 15% around the pole. The ammonia volume mixing ratio varies from 1 × 10−4 to 4 × 10−4. A marked minimum exists around 10°N, while data suggest an increase over the equator. The high‐latitude regions are different in the two hemispheres, with a gradual increase in the south and more constant values with latitude in the north. The phosphine volume mixing ratio varies from 4 × 10−7 to 10 × 10−7. A marked minimum exists in the North Equatorial Belt. For latitudes poleward 30°S and 30°N, the northern hemisphere appears richer in phosphine, with a decrease toward the pole, while the opposite is observed in the south. JIRAM data indicate an increase of germane volume mixing ratio from 2 × 10−10 to 8 × 10−10 from both poles to 15°S, with a depletion centered around the equator. Arsine presents the opposite trend, with maximum values of 6 × 10−10 at the two poles and minima below 1 × 10−10 around 20°S.Key PointsHorizontal variations of gases are dominated by latitudinal components; longitudinal variations are relatively more important for waterPhosphine and germane abundances fit well the model of disequilibrium species transported upward from deep troposphere by vertical mixingStrong upturn of arsine at polar latitudes seen by JIRAM cannot be explained by the diffusion‐kinetics model
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherJupiter
dc.subject.otheratmospheric composition
dc.subject.otherminor gases
dc.titleOn the Spatial Distribution of Minor Species in Jupiter’s Troposphere as Inferred From Juno JIRAM Data
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154637/1/jgre21310_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154637/2/jgre21310.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154637/3/jgre21310-sup-0001-2019JE006206-SI.pdf
dc.identifier.doi10.1029/2019JE006206
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceOrton, G. S., Momary, T., Ingersoll, A. P., Adriani, A., Hansen, C. J., Janssen, M., Arballo, J., Atreya, S. K., Bolton, S., Brown, S., Caplinger, M., Grassi, D., Li, C., Levin, S., Moriconi, M. L., Mura, A., & Sindoni, G. ( 2017 ). Multiple‐wavelength sensing of Jupiter during the Juno mission’s first perijove passage. Geophysical Research Letters, 44, 4607 – 4614. https://doi.org/10.1002/2017GL073019
dc.identifier.citedreferenceFletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. ( 2017 ). Moist convection and the 2010–2011 revival of Jupiter’s South Equatorial Belt. Icarus, 286, 94 – 117. https://doi.org/10.1016/j.icarus.2017.01.001
dc.identifier.citedreferenceFletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. ( 2009 ). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202 ( 2 ), 543 – 564. https://doi.org/10.1016/j.icarus.2009.03.023
dc.identifier.citedreferenceGierasch, P. J., Conrath, B. J., & Magalha˜es, J. A. ( 1986 ). Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus, 67 ( 3 ), 456 – 483. https://doi.org/10.1016/0019‐1035(86)90125‐9
dc.identifier.citedreferenceGiles, R. S., Fletcher, L. N., & Irwin, P. G. J. ( 2015 ). Cloud structure and composition of Jupiter’s troposphere from 5‐μm Cassini VIMS spectroscopy. Icarus, 257, 457 – 470. https://doi.org/10.1016/j.icarus.2015.05.030
dc.identifier.citedreferenceGiles, R. S., Fletcher, L. N., & Irwin, P. G. J. ( 2017 ). Latitudinal variability in Jupiter’s tropospheric disequilibrium species: GeH 4, AsH 3 and PH 3. Icarus, 289, 254 – 269. https://doi.org/10.1016/j.icarus.2016.10.023
dc.identifier.citedreferenceGiles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. ( 2017 ). Ammonia in Jupiter’s troposphere from high‐resolution 5 μm spectroscopy. Geophysical Research Letters, 44, 10,838 – 10,844. https://doi.org/10.1002/2017GL075221
dc.identifier.citedreferenceGordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J. M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M. A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Császár, A. G., Devi, V. M., Furtenbacher, T., Harrison, J. J., Hartmann, J. M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen‐Ahmadi, N., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Auwera, J. V., Wagner, G., Wilzewski, J., Wcisło, P., Yu, S., & Zak, E. J. ( 2017 ). The HITRAN2016 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3 – 69. https://doi.org/10.1016/j.jqsrt.2017.06.038
dc.identifier.citedreferenceGrassi, D., Adriani, A., Moriconi, M. L., Ignatiev, N. I., D’Aversa, E., Colosimo, F., Negrão, A., Brower, L., Dinelli, B. M., Coradini, A., & Piccioni, G. ( 2010 ). Jupiter’s hot spots: Quantitative assessment of the retrieval capabilities of future IR spectro‐imagers. Planetary and Space Science, 58 ( 10 ), 1265 – 1278. https://doi.org/10.1016/j.pss.2010.05.003
dc.identifier.citedreferenceGrassi, D., Adriani, A., Mura, A., Dinelli, B. M., Sindoni, G., Turrini, D., Filacchione, G., Migliorini, A., Moriconi, M. L., Tosi, F., Noschese, R., Cicchetti, A., Altieri, F., Fabiano, F., Piccioni, G., Stefani, S., Atreya, S., Lunine, J., Orton, G., Ingersoll, A., Bolton, S., Levin, S., Connerney, J., Olivieri, A., & Amoroso, M. ( 2017 ). Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 44, 4615 – 4624. https://doi.org/10.1002/2017GL072841
dc.identifier.citedreferenceGrassi, D., Ignatiev, N. I., Sindoni, G., d’Aversa, E., Maestri, T., Adriani, A., Mura, A., Filacchione, G., Dinelli, B. M., Noschese, R., Cicchetti, A., Piccioni, G., Turrini, D., Tosi, F., Moriconi, M. L., Olivieri, A., Plainaki, C., Amoroso, M., Atreya, S. K., Orton, G. S., & Bolton, S. ( 2017 ). Analysis of IR‐bright regions of Jupiter in JIRAM‐Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 202, 200 – 209. https://doi.org/10.1016/j.jqsrt.2017.08.008
dc.identifier.citedreferenceIngersoll, A. P., Dowling, T. E., Gierasch, P. J., Orton, G. S., Read, P. L., Sánchez‐Lavega, A., Showman, A. P., Simon‐Miller, A. A., & Vasavada, A. R. ( 2004 ). Dynamic of Jupiter’s atmosphere, in Jupiter, the planet, satellite and magnetosphere, Bagenal, Dowling and McKinnon ed. Cambridge: Cambridge University Press. ISBN: 0521818087.
dc.identifier.citedreferenceIrwin, P. G., Weir, A. L., Taylor, F. W., Calcutt, S. B., & Carlson, R. W. ( 2001 ). The origin of belt/zone contrasts in the atmosphere of Jupiter and their correlation with 5‐μm opacity. Icarus, 149 ( 2 ), 397 – 415. https://doi.org/10.1006/icar.2000.6542
dc.identifier.citedreferenceIrwin, P. G. J., Teanby, N. A., de Kok, R., Fletcher, L. N., Howett, C. J. A., Tsang, C. C. C., Wilson, C. F., Calcutt, S. B., Nixon, C. A., & Parrish, P. D. ( 2007 ). The NEMESIS planetary atmosphere radiative transfer and retrieval tool. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 1136 – 1150. https://doi.org/10.1016/j.jqsrt.2007.11.006
dc.identifier.citedreferenceIrwin, P. G. J., Weir, A. L., Smith, S. E., Taylor, F. W., Lambert, A. L., Calcutt, S. B., Cameron‐Smith, P. J., Carlson, R. W., Baines, K., Orton, G. S., Drossart, P., Encrenaz, T., & Roos‐Serote, M. ( 1998 ). Cloud structure and atmospheric composition of Jupiter retrieved from Galileo near‐infrared mapping spectrometer real‐time spectra. Journal of Geophysical Research, 103 ( E10 ), 23001 – 23021. https://doi.org/10.1029/98JE00948
dc.identifier.citedreferenceJacquinet‐Husson, N., Arié, E., Ballard, J., Barbe, A., Bjoraker, G., Bonnet, B., Brown, L. R., Camy‐Peyret, C., Champion, J. P., Chédin, A., Chursin, A., Clerbaux, C., Duxbury, G., Flaud, J. M., Fourrié, N., Fayt, A., Graner, G., Gamache, R., Goldman, A., Golovko, V., Guelachvili, G., Hartmann, J. M., Hilico, J. C., Hillman, J., Lefèvre, G., Lellouch, E., Mikhaı̈lenko, S. N., Naumenko, O. V., Nemtchinov, V., Newnham, D. A., Nikitin, A., Orphal, J., Perrin, A., Reuter, D. C., Rinsland, C. P., Rosenmann, L., Rothman, L. S., Scott, N. A., Selby, J., Sinitsa, L. N., Sirota, J. M., Smith, A. M., Smith, K. M., Tyuterev, V. G., Tipping, R. H., Urban, S., Varanasi, P., & Weber, M. ( 1999 ). The 1997 spectroscopic GEISA databank. Journal of Quantitative Spectroscopy and Radiative Transfer, 62 ( 2 ), 205 – 254. https://doi.org/10.1016/S0022‐4073(98)00111‐3
dc.identifier.citedreferenceKylling, A., Stamnes, K., & Tsay, S.. C. ( 1995 ). A reliable and efficient two‐stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media. Journal of Atmospheric Chemistry, 21 ( 2 ), 115 – 150. https://doi.org/10.1007/BF00696577
dc.identifier.citedreferenceLi, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., Allison, M., Arballo, J., Bellotti, A., Brown, S., Ewald, S., Jewell, L., Misra, S., Orton, G., Oyafuso, F., Steffes, P., & Williamson, R. ( 2017 ). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 44, 5317 – 5325. https://doi.org/10.1002/2017GL073159
dc.identifier.citedreferenceMcInnes, L., Healy, J., & Astels, S. ( 2017 ). Hdbscan: Hierarchical density based clustering. Journal of Open Source Software, 2 ( 11 ), 205. https://doi.org/10.21105/joss.00205
dc.identifier.citedreferenceNoschese, R., and Adriani, A., ( 2017 ), JNO‐J‐JIRAM‐3‐RDR‐V1.0, NASA Planetary Data System, https://pds‐atmospheres.nmsu.edu/data_and_services/atmospheres_data/JUNO/jiram.html
dc.identifier.citedreferencePorco, C., West, R. A., McEwen, A., del Genio, A., Ingersoll, A. P., Thomas, P., Squyres, S., Dones, L., Murray, C. D., Johnson, T. V., Burns, J. A., Brahic, A., Neukum, G., Veverka, J., Barbara, J. M., Denk, T., Evans, M., Ferrier, J. J., Geissler, P., Helfenstein, P., Roatsch, T., Throop, H., Tiscareno, M., & Vasavada, A. R. ( 2003 ). Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299 ( 5612 ), 1541 – 1547. https://doi.org/10.1126/science.1079462
dc.identifier.citedreferencePrinn, R. G., & Barshay, S. S. ( 1977 ). Carbon monoxide on Jupiter and implications for atmospheric convection. Science, 198 ( 4321 ), 1031 – 1034. https://doi.org/10.1126/science.198.4321.1031‐a
dc.identifier.citedreferenceRobinson, T. D., & Catling, D. C. ( 2013 ). Common 0.1 bar tropopause in thick atmospheres set by pressure‐dependent infrared transparency. Nature Geoscience, 7. https://doi.org/10.1038/ngeo2020
dc.identifier.citedreferenceRodgers, C. R. ( 2000 ). Inverse methods for atmospheric sounding: Theory and practice. Singapore: World Scientific. ISBN: 9789810227401.
dc.identifier.citedreferenceRogers, J. H. ( 2009 ). The giant planet Jupiter. Cambridge University Press, ISBN‐13, 978 – 0521115308.
dc.identifier.citedreferenceRoos‐Serote, M., Drossart, P., Encrenaz, T., Lellouch, E., Carlson, R. W., Baines, K. H., Kamp, L., Mehlman, R., Orton, G. S., Calcutt, S., Irwin, P., Taylor, F., & Weir, A. ( 1998 ). Analysis of Jupiter north equatorial belt hot spots in the 4–5 μm range from Galileo/near‐infrared mapping spectrometer observations: Measurements of cloud opacity, water, and ammonia. Journal of Geophysical Research, 103 ( E10 ). https://doi.org/10.1029/98JE01049
dc.identifier.citedreferenceRoos‐Serote, M., Vasavada, A. R., Kamp, L., Drossart, P., Irwin, P., Nixon, C., & Carlson, R. W. ( 2000 ). Proximate humid and dry regions in Jupiter’s atmosphere indicate complex local meteorology. Nature, 405 ( 6783 ), 158 – 160. https://doi.org/10.1038/35012023
dc.identifier.citedreferenceSchaeffer, R. D., & Lovejoy, R. W. ( 1985 ). Absolute line strengths of 74 GeH 4 near 5 μm. Journal of Molecular Spectroscopy, 113. https://doi.org/10.1016/0022‐2852(85)90270‐X
dc.identifier.citedreferenceSeiff, A., Kirk, D. B., Knight, T. C. D., Young, R. E., Mihalov, J. D., Young, L. A., Milos, F. S., Schubert, G., Blanchard, R. C., & Atkinson, D. ( 1998 ). Thermal structure of Jupiter’s atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt. Journal of Geophysical Research, 103 ( E10 ), 22857 – 22889. https://doi.org/10.1029/98JE01766. Available as numerical data as GP‐J‐ASI‐3‐ENTRY‐V1.0, NASA Planetary Data System
dc.identifier.citedreferenceShowman, A. P., & Ingersoll, A. P. ( 1998 ). Interpretation of Galileo probe data and implications for Jupiter’s dry downdrafts. Icarus, 132. https://doi.org/10.1006/icar.1998.5898
dc.identifier.citedreferenceSiegel, S. ( 1956 ). Non‐parametric statistics for the behavioral sciences. New York: McGraw‐Hill. ISBN: 0070856893.
dc.identifier.citedreferenceSindoni, G., Grassi, D., Adriani, A., Mura, A., Moriconi, M. L., Dinelli, B. M., Filacchione, G., Tosi, F., Piccioni, G., Migliorini, A., Altieri, F., Fabiano, F., Turrini, D., Noschese, R., Cicchetti, A., Stefani, S., Bolton, S. J., Connerney, J. E. P., Atreya, S. K., Bagenal, F., Hansen, C., Ingersoll, A., Janssen, M., Levin, S. M., Lunine, J. I., Orton, G., Olivieri, A., & Amoroso, M. ( 2017 ). Characterization of the white ovals on Jupiter’s Southern Hemisphere using the first data by the Juno/JIRAM instrument. Geophysical Research Letters, 44, 4660 – 4668. https://doi.org/10.1002/2017GL072940
dc.identifier.citedreferenceTaylor, F. W., Atreya, S. K., Encrenaz, Th., Hunten, D. M., Irwin, P. G. J., & Owen, T. C. ( 2004 ). The composition of the atmosphere of Jupiter, in Jupiter, the planet, satellite and magnetosphere, Bagenal, Dowling and McKinnon ed. Cambridge: Cambridge University Press. ISBN: 0521818087.
dc.identifier.citedreferenceTollefson, J., Wong, M. H., de Pater, I., Simon, A. A., Orton, G. S., Rogers, J. H., Atreya, S. K., Cosentino, R. G., Januszewski, W., Morales‐Juberías, R., & Marcus, P. S. ( 2017 ). Changes in Jupiter’s zonal wind profiles preceding and during the Juno mission. Icarus, 296, 163 – 178. https://doi.org/10.1016/j.icarus.2017.06.007
dc.identifier.citedreferenceVisscher, C., & Fegley, B. ( 2005 ). Chemical constraints on the water and total oxygen abundances in the deep atmosphere of Saturn. The Astrophysical Journal, 623. https://doi.org/10.1086/428493
dc.identifier.citedreferenceVisscher, C., & Moses, J. I. ( 2011 ). Quenching of carbon monoxide and methane in the atmospheres of cool brown dwarfs and hot Jupiters. The Astrophysical Journal, 783 ( 1 ). https://doi.org/10.1088/0004‐637X/738/1/72
dc.identifier.citedreferenceWallace, J., & Hobbs, P. ( 2006 ). Atmospheric science. An introductory survey. London: Academic Press. ISBN: 9780127329512.
dc.identifier.citedreferenceWang, D., Gierasch, P. J., Lunine, J. I., & Mousis, O. ( 2015 ). New insights on Jupiter’s deep water abundance from disequilibrium species. Icarus, 250, 154 – 164. https://doi.org/10.1016/j.icarus.2014.11.026
dc.identifier.citedreferenceWang, D., Lunine, J. I., & Mousis, O. ( 2016 ). Modeling the disequilibrium species for Jupiter and Saturn: Implications for Juno and Saturn entry probe. Icarus, 276, 21 – 38. https://doi.org/10.1016/j.icarus.2016.04.027
dc.identifier.citedreferenceWenger, C., & Champion, J. P. ( 1998 ). Spherical top data system (STDS) software for the simulation of spherical top spectra. Journal of Quantitative Spectroscopy and Radiative Transfer, 59. https://doi.org/10.1016/S0022‐4073(97)00106‐4
dc.identifier.citedreferenceYoung, R. M. B., Read, P. L., & Wang, Y. ( 2018 ). Simulating Jupiter’s weather layer. Part I: Jet spin‐up in a dry atmosphere. Icarus, 326, 225 – 252. https://doi.org/10.1016/j.icarus.2018.12.005
dc.identifier.citedreferenceAchterberg, R. K., Conrath, B. J., & Gierasch, P. J. ( 2006 ). Cassini CIRS retrievals of ammonia in Jupiter’s upper troposphere. Icarus, 182. https://doi.org/10.1016/j.icarus.2005.12.020
dc.identifier.citedreferenceStamnes, K., Tsay, S. C., Wiscombe, W., & Jayaweera, K. ( 1998 ). Numerically stable algorithm for discrete‐ordinate‐method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27 ( 12 ), 2502 – 2509. https://doi.org/10.1364/AO.27.002502
dc.identifier.citedreferenceAdriani, A., Filacchione, G., Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., Grassi, D., Mura, A., Sindoni, G., Zambelli, M., Piccioni, G., Capria, M. T., Tosi, F., Orosei, R., Dinelli, B. M., Moriconi, M. L., Roncon, E., Lunine, J. I., Becker, H. N., Bini, A., Barbis, A., Calamai, L., Pasqui, C., Nencioni, S., Rossi, M., Lastri, M., Formaro, R., & Olivieri, A. ( 2014 ). JIRAM, the Jovian Infrared Auroral Mapper. Space Science Reviews, 213 ( 1‐4 ), 393 – 446. https://doi.org/10.1007/s11214‐014‐0094‐y
dc.identifier.citedreferenceAdriani, A., Moriconi, M. L., Mura, A., Tosi, F., Sindoni, G., Noschese, R., Cicchetti, A., & Filacchione, G. ( 2016 ). Juno’s Earth flyby: The Jovian Infrared Auroral Mapper preliminary results. Astrophysics and Space Science, 361 ( 8 ), 1 – 8. https://doi.org/10.1007/s10509‐016‐2842‐9
dc.identifier.citedreferenceAdriani, A., Bracco, A., Grassi, D., Moriconi, M. L., Mura, A., Orton, G. S., Altieri, F., Ingersoll, A., Atreya, S. K., Lunine, J. I., Migliorini, A., Noschese, R., Cicchetti, A., Sordini, R., Sindoni, G., Plainaki, C., Dinelli, B. M., Turrini, D., Filacchione, G., Piccioni, G., Tosi, F., & Bolton, S. ( 2020 ). Two‐years observations of the Jupiter polar regions by JIRAM on board Juno, in press on. Journal of Geophysical Research Planets. https://doi.org/10.1029/2019JE006098
dc.identifier.citedreferenceAntuñano, A., Fletcher, L. N., Orton, G. S., Melin, H., Rogers, J. H., Harrington, J., Donnelly, P. T., Rowe‐Gurney, N., & Blake, J. S. D. ( 2018 ). Infrared characterization of Jupiter’s equatorial disturbance cycle. Geophysical Research Letters, 45 ( 20 ). https://doi.org/10.1029/2018GL080382
dc.identifier.citedreferenceArchinal, B. A., A’Hearn, M. F., Bowell, E., Conrad, A., Consolmagno, G. J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J. L., Krasinsky, G. A., Neumann, G., Oberst, J., Seidelmann, P. K., Stooke, P., Tholen, D. J., Thomas, P. C., & Williams, I. P. ( 2011 ). Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celestial Mechanics and Dynamical Astronomy, 109 ( 2 ), 101 – 135. https://doi.org/10.1007/s10569‐010‐9320‐4
dc.identifier.citedreferenceAtreya, S. K., Wong, M. H., Owen, T. C., Mahaffy, P. R., Niemann, H. B., de Pater, I., Drossart, P., & Encrenaz, T. ( 1999 ). A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planetary and Space Science, 47 ( 10–11 ), 1243 – 1262. https://doi.org/10.1016/S0032‐0633(99)00047‐1
dc.identifier.citedreferenceBjoraker, G. L., Wong, M. H., Pater, I.., & Ádámkovics, M. ( 2015 ). Jupiter’s deep cloud structure revealed using Keck observations of spectrally resolved line shape. The Astrophysical Journal, 810 ( 2 ), 122. https://doi.org/10.1088/0004‐637x/810/2/122
dc.identifier.citedreferenceBlain, D., Fouchet, T., Greathouse, T., Encrenaz, T., Charnay, B., Bézard, B., Li, C., Lellouch, E., Orton, G., N. Fletcher, L., & Drossart, P. ( 2018 ). Mapping of Jupiter’s tropospheric NH 3 abundance using ground‐based IRTF/TEXES observations at 5 μm. Icarus, 314, 106 – 120. https://doi.org/10.1016/j.icarus.2018.06.002
dc.identifier.citedreferenceBolton, S., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., Bloxham, J., Brown, S., Connerney, J. E. P., DeJong, E., Folkner, W., Gautier, D., Grassi, D., Gulkis, S., Guillot, T., Hansen, C., Hubbard, W. B., Iess, L., Ingersoll, A., Janssen, M., Jorgensen, J., Kaspi, Y., Levin, S. M., Li, C., Lunine, J., Miguel, Y., Mura, A., Orton, G., Owen, T., Ravine, M., Smith, E., Steffes, P., Stone, E., Stevenson, D., Thorne, R., Waite, J., Durante, D., Ebert, R. W., Greathouse, T. K., Hue, V., Parisi, M., Szalay, J. R., & Wilson, R. ( 2017 ). Jupiter’s interior and deep atmosphere: The initial pole‐to‐pole passes with the Juno spacecraft. Science, 356 ( 6340 ), 821 – 825. https://doi.org/10.1126/science.aal2108
dc.identifier.citedreferenceBoudon, V., Grigoryan, T., Philipot, F., Richard, C., Tchana, F. K., Manceron, L., Rizopoulos, A., Auwera, J. V., & Encrenaz, T. ( 2018 ). Line positions and intensities for the ν 3 band of 5 isotopologues of germane for planetary applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 174 – 183. https://doi.org/10.1016/j.jqsrt.2017.10.017
dc.identifier.citedreferenceCampello, R. J., Moulavi, D., & Sander, J. ( 2013 ). Density‐based clustering based on hierarchical density estimates. In Pacific‐ Asia conference on knowledge discovery and data mining (pp. 160 – 172 ). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978‐3‐642‐37456‐2_14
dc.identifier.citedreferenceConrath, B. J., Gierasch, P. J., & Ustinov, E. A. ( 1998 ). Thermal structure and para hydrogen fraction on the outer planets from Voyager IRIS measurements. Icarus, 135 ( 2 ), 501 – 517. https://doi.org/10.1006/icar.1998.6000
dc.identifier.citedreferencede Pater, I., Sault, R. J., Butler, B., DeBoer, D., & Wong, M. H. ( 2016 ). Peering through Jupiter’s clouds with radio spectral imaging. Science, 352 ( 6290 ), 1198 – 1201. https://doi.org/10.1126/science.aaf2210
dc.identifier.citedreferenceDowling, T. E., & Gierasch, P. J. ( 1989 ). Cyclones and moist convection on Jovian planets. Bulletin of the American Astronomical Society, 21.
dc.identifier.citedreferenceDrossart, P., Lellouch, E., Bézard, B., Maillard, J. P., & Tarrago, G. ( 1990 ). Jupiter: Evidence for a phosphine enhancement at high northern latitudes. Icarus, 83 ( 1 ), 248 – 253. https://doi.org/10.1016/0019‐1035(90)90018‐5
dc.identifier.citedreferenceDrossart, P., Roos‐Serote, M., Encrenaz, T., Lellouch, E., Baines, K. H., Carlson, R. W., Kamp, L. W., Orton, G. S., Calcutt, S., Irwin, P., Taylor, F. W., & Weir, A. ( 1998 ). The solar reflected component in Jupiter’s 5‐μm spectra from NIMS/Galileo observations. Journal of Geophysical Research, 103 ( E10 ), 23043 – 23049. https://doi.org/10.1029/98JE01899
dc.identifier.citedreferenceFegley, B., & Prinn, R. G. ( 1985 ). Equilibrium and nonequilibrium chemistry of Saturn’s atmosphere—Implications for the observability of PH 3, N 2, CO, and GeH 4. The Astrophysical Journal, 299. https://doi.org/10.1086/163775
dc.identifier.citedreferenceFletcher L., Antunano A., Orton G., Greathouse T., Melin H., Donnelly P., Rogers J., & Mettig H. J. ( 2019 ) Jupiter’s ammonia‐rich equatorial plumes, contribution 453‐1 to the EPSC‐DPS Joint Meeting 2019, https://meetingorganizer.copernicus.org/EPSC‐DPS2019/EPSC‐DPS2019‐453‐1.pdf
dc.identifier.citedreferenceFletcher, L. N. ( 2017 ). Cycles of activity in the Jovian atmosphere. Geophysical Research Letters, 44, 4725 – 4729. https://doi.org/10.1002/2017GL073806
dc.identifier.citedreferenceFletcher, L. N., Greathouse, T. K., Orton, G. S., Sinclair, J. A., Giles, R. S., Irwin, P. G. J., & Encrenaz, T. ( 2016 ). Mid‐infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus, 278, 128 – 161. https://doi.org/10.1016/j.icarus.2016.06.008
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.