Show simple item record

Locating the source field lines of Jovian decametric radio emissions

dc.contributor.authorWang, YuMing
dc.contributor.authorJia, XianZhe
dc.contributor.authorWang, ChuanBing
dc.contributor.authorWang, Shui
dc.contributor.authorKrupar, Vratislav
dc.date.accessioned2020-04-02T18:39:22Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-04-02T18:39:22Z
dc.date.issued2020-03
dc.identifier.citationWang, YuMing; Jia, XianZhe; Wang, ChuanBing; Wang, Shui; Krupar, Vratislav (2020). "Locating the source field lines of Jovian decametric radio emissions." Earth and Planetary Physics 4(2): 95-104.
dc.identifier.issn2096-3955
dc.identifier.issn2096-3955
dc.identifier.urihttps://hdl.handle.net/2027.42/154647
dc.publisherWiley Periodicals, Inc.
dc.subject.otherradio decametric emissions
dc.subject.otherenergetic electrons
dc.subject.otherJovian magnetosphere
dc.titleLocating the source field lines of Jovian decametric radio emissions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154647/1/epp320131.pdf
dc.identifier.doi10.26464/epp2020015
dc.identifier.sourceEarth and Planetary Physics
dc.identifier.citedreferenceRamachandran, P., & Varoquaux, G. ( 2011 ). Mayavi: 3D visualization of scientific data. Comput. Sci. Eng., 13 ( 2 ), 40 – 51 https://doi.org/10.1109/MCSE.2011.35.
dc.identifier.citedreferenceImai, K., Wang, L. Y., and Can, T. D. ( 1997 ). Modeling Jupiter’s decametric modulation lanes. J. Geophys. Res.: Space Phys., 102 (A4), 7127–7136. https://doi.org/10.1029/96JA03960
dc.identifier.citedreferenceImai, K., Riihimaa, J. J., Reyes, F., and Carr, T. D. ( 2002 ). Measurement of Jupiter’s decametric radio source parameters by the modulation lane method. J. Geophys. Res.: Space Phys., 107 (A6), SMP 12‐1–SMP 12‐11. https://doi.org/10.1029/2001JA007555
dc.identifier.citedreferenceJacobsen, S., Neubauer, F. M., Saur, J., and Schilling, N. ( 2007 ). Io’s nonlinear MHD‐wave field in the heterogeneous Jovian magnetosphere. Geophys. Res. Lett., 34 (10), L10202. https://doi.org/10.1029/2006GL029187
dc.identifier.citedreferenceKaiser, M. L., Zarka, P., Kurth, W. S., Hospodarsky, G. B., and Gurnett, D. A. ( 2000 ). Cassini and Wind stereoscopic observations of Jovian nonthermal radio emissions: Measurement of beam widths. J. Geophys. Res.: Space Phys., 105 (A7), 16053–16062. https://doi.org/10.1029/1999JA000414
dc.identifier.citedreferenceKivelson, M. G., and Southwood, D. J. ( 2005 ). Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res.: Space Phys., 110 (A12), A12209. https://doi.org/10.1029/2005JA011176
dc.identifier.citedreferenceKivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. ( 2004 ). Magnetospheric interactions with satellites. In F. Bagenal, et al. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere (pp. 513 – 536 ). Cambridge: Cambridge University Press.
dc.identifier.citedreferenceLamy, L., Zarka, P., Cecconi, B., Hess, S., and Prangé, R. ( 2008 ). Modeling of Saturn kilometric radiation arcs and equatorial shadow zone. J. Geophys. Res.: Space Phys., 113 (A10), A10213. https://doi.org/10.1029/2008JA013464
dc.identifier.citedreferenceLamy, L., Prangé, R., Pryor, W., Gustin, J., Badman, S. V., Melin, H., Stallard, T., Mitchell, D. G., and Brandt, P. C. ( 2013 ). Multispectral simultaneous diagnosis of Saturn’s aurorae throughout a planetary rotation. J. Geophys. Res.: Space Phys., 118 (8), 4817–4843. https://doi.org/10.1002/jgra.50404
dc.identifier.citedreferenceLecacheux, A. ( 1988 ). Polarization aspects from planetary radio emissions. In H. O. Rucker, et al. (Eds.), Planetary Radio Emissions II (pp. 311 – 326 ). Vienna: Austrian Academy of Science.
dc.identifier.citedreferencePanchenko, M., & Rucker, H. O. ( 2016 ). Estimation of emission cone wall thickness of Jupiter’s decametric radio emission using stereoscopic STEREO/WAVES observations. Astron. Astrophys., 596, A18 https://doi.org/10.1051/0004‐6361/201527397.
dc.identifier.citedreferenceQueinnec, J., and Zarka, P. ( 1998 ). Io‐controlled decameter arcs and Io‐Jupiter interaction. J. Geophys. Res.: Space Phys., 103 (A11), 26649–26666. https://doi.org/10.1029/98JA02435
dc.identifier.citedreferenceRiihimaa, J. J. ( 1968 ). Structured events in the dynamic spectra of Jupiter’s decametric radio emission. Astron. J., 73, 265 – 270 https://doi.org/10.1086/110627.
dc.identifier.citedreferenceRiihimaa, J. J. ( 1978 ). L‐bursts in Jupiter’s decametric radio spectra. Astrophys. Space Sci., 56 ( 2 ), 503 – 518 https://doi.org/10.1007/BF01879581.
dc.identifier.citedreferenceSaur, J., Neubauer, F. M., Strobel, D. F., and Summers, M. E. ( 1999 ). Three‐dimensional plasma simulation of Io’s interaction with the Io plasma torus: Asymmetric plasma flow. J. Geophys. Res.: Space Phys., 104 (A11), 25105–25126. https://doi.org/10.1029/1999JA900304
dc.identifier.citedreferenceSchneider, N. M., and Bagenal, F. ( 2007 ). Io’s neutral clouds, plasma torus, magnetospheric interactions. In R. M. C. Lopes, et al. (Eds.), Io after Galileo (pp. 265‐286). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978‐3‐540‐48841‐5_11
dc.identifier.citedreferenceTreumann, R. A. ( 2006 ). The electron‐cyclotron maser for astrophysical application. Astron. Astrophys. Rev., 13 ( 4 ), 229 – 315 https://doi.org/10.1007/s00159‐006‐0001‐y.
dc.identifier.citedreferenceWaite, J. H. Jr., Clarke, J. T., Cravens, T. E., and Hammond, C. M. ( 1988 ). The Jovian aurora: Electron or ion precipitation?. J. Geophys. Res.: Space Phys., 93 (A7), 7244–7250. https://doi.org/10.1029/JA093iA07p07244
dc.identifier.citedreferenceWu, C. S., & Lee, L. C. ( 1979 ). A theory of terrestrial kilometric radiation. Astrophys. J., 230, 621 – 626 https://doi.org/10.1086/157120.
dc.identifier.citedreferenceZarka, P. ( 1998 ). Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res.: Plants, 103 (E9), 20159–20194. https://doi.org/10.1029/98JE01323
dc.identifier.citedreferenceZarka, P., Farges, T., Ryabov, B. P., Abada‐Simon, M., & Denis, L. ( 1996 ). A scenario for Jovian S‐bursts. Geophys. Res. Lett., 23 ( 2 ), 125 – 128 https://doi.org/10.1029/95GL03780.
dc.identifier.citedreferenceBagenal, F. ( 1994 ). Empirical model of the Io plasma torus: Voyager measurements. J. Geophys. Res.: Space Phys., 99 (A6), 11043–11062. https://doi.org/10.1029/93JA02908
dc.identifier.citedreferenceBolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., … Thorpe, R. ( 2017 ). The Juno mission. Space Sci. Rev., 213 ( 1‐4 ), 5 – 37 https://doi.org/10.1007/s11214‐017‐0429‐6.
dc.identifier.citedreferenceBonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Saur, J., and Jacobsen, S. ( 2008 ). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity?. Geophys. Res. Lett., 35 (5), L05107. https://doi.org/10.1029/2007GL032418
dc.identifier.citedreferenceBonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Dols, V., Delamere, P. A., and Clarke, J. T. ( 2009 ). The Io UV footprint: Location, inter‐spot distances and tail vertical extent. J. Geophys. Res.: Space Phys., 114 (A7), A07224. https://doi.org/10.1029/2009JA014312
dc.identifier.citedreferenceBougeret, J. L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., … Hoang, S. S. ( 1995 ). WAVEs: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev., 71 ( 1‐4 ), 231 – 263 https://doi.org/10.1007/BF00751331.
dc.identifier.citedreferenceBougeret, J. L., Goetz, K., Kaiser, M. L., Bale, S. D., Kellogg, P. J., Maksimovic, M., … Zouganelis, I. ( 2008 ). S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev., 136 ( 1‐4 ), 487 – 528 https://doi.org/10.1007/s11214‐007‐9298‐8.
dc.identifier.citedreferenceCarr, T. D., Desch, M. D., & Alexander, J. K. ( 1983 ). Phenomenology of magnetospheric radio emissions. In A. J. Dessler (Ed.), Physics of Jovian Magnetosphere (pp. 226 – 284 ). New York: Cambridge University Press.
dc.identifier.citedreferenceConnerney, J. E. P. ( 1992 ). Doing more with Jupiter’s magnetic field. In H. O. Rucker, et al. (Eds.), Planetary Radio Emissions III (pp. 13 – 33 ). Vienna: Austrian Academy of Science.
dc.identifier.citedreferenceConnerney, J. E. P., Acuña, M. H., and Ness, N. F. ( 1981 ). Modeling the Jovian current sheet and inner magnetosphere. J. Geophys. Res.: Space Phys., 86 (A10), 8370–8384. https://doi.org/10.1029/JA086iA10p08370
dc.identifier.citedreferenceConnerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., … …Levin, S. M. ( 2018 ). A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophys. Res. Lett., 45 ( 6 ), 2590 – 2596 https://doi.org/10.1002/2018GL077312.
dc.identifier.citedreferenceCowley, S. W. H., & Bunce, E. J. ( 2001 ). Origin of the main auroral oval in Jupiter’s coupled magnetosphere‐ionosphere system. Planet. Space Sci., 49 ( 10‐11 ), 1067 – 1088 https://doi.org/10.1016/S0032‐0633(00)00167‐7.
dc.identifier.citedreferenceDulk, G. A., Leblanc, Y., & Lecacheux, A. ( 1994 ). The complete polarization state of Io‐related radio storms from Jupiter: A statistical study. Astron. Astrophys., 286, 683 – 700.
dc.identifier.citedreferenceGiampieri, G., & Dougherty, M. K. ( 2004 ). Modelling of the ring current in Saturn’s magnetosphere. Ann. Geophys., 22 ( 2 ), 653 – 659 https://doi.org/10.5194/angeo‐22‐653‐2004.
dc.identifier.citedreferenceGrodent, D., Bonfond, B., Gérard, J. C., Radioti, A., Gustin, J., Clarke, J. T., Nichols, J., and Connerney, J. E. P. ( 2008 ). Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. J. Geophys. Res.: Space Phys., 113 (A9), A09201. https://doi.org/10.1029/2008JA013185
dc.identifier.citedreferenceHess, S., Zarka, P., & Mottez, F. ( 2007 ). Io‐Jupiter interaction, millisecond bursts and field‐aligned potentials. Planet. Space Sci., 55 ( 1–2 ), 89 – 99 https://doi.org/10.1016/j.pss.2006.05.016.
dc.identifier.citedreferenceHess, S., Cecconi, B., and Zarka, P. ( 2008 ). Modeling of Io‐Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett., 35 (13), L13107. https://doi.org/10.1029/2008GL033656
dc.identifier.citedreferenceHess, S. L. G., Pétin, A., Zarka, P., Bonfond, B., & Cecconi, B. ( 2010 ). Lead angles and emitting electron energies of Io‐controlled decameter radio arcs. Planet. Space Sci., 58 ( 10 ), 1188 – 1198 https://doi.org/10.1016/j.pss.2010.04.011.
dc.identifier.citedreferenceHess, S. L. G., Echer, E., Zarka, P., Lamy, L., & Delamere, P. A. ( 2014 ). Multi‐instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates. Planet. Space Sci., 99, 136 – 148 https://doi.org/10.1016/j.pss.2014.05.015.
dc.identifier.citedreferenceHill, T. W., Dessler, A. J., & Goertz, C. K. ( 1983 ). Magnetospheric models. In A. J. Dessler (Ed.), Physics of the Jovian Magnetosphere (pp. 353 – 394 ). Cambridge: Cambridge University Press.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.