Show simple item record

Optimisation of energetic and reproductive gains explains behavioural responses to environmental variation across seasons and years

dc.contributor.authorStudd, E. K.
dc.contributor.authorMenzies, A. K.
dc.contributor.authorSiracusa, E. R.
dc.contributor.authorDantzer, B.
dc.contributor.authorLane, J. E.
dc.contributor.authorMcAdam, A. G.
dc.contributor.authorBoutin, S.
dc.contributor.authorHumphries, M. M.
dc.date.accessioned2020-05-05T19:33:45Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-05-05T19:33:45Z
dc.date.issued2020-05
dc.identifier.citationStudd, E. K.; Menzies, A. K.; Siracusa, E. R.; Dantzer, B.; Lane, J. E.; McAdam, A. G.; Boutin, S.; Humphries, M. M. (2020). "Optimisation of energetic and reproductive gains explains behavioural responses to environmental variation across seasons and years." Ecology Letters 23(5): 841-850.
dc.identifier.issn1461-023X
dc.identifier.issn1461-0248
dc.identifier.urihttps://hdl.handle.net/2027.42/154889
dc.description.abstractAnimals switch between inactive and active states, simultaneously impacting their energy intake, energy expenditure and predation risk, and collectively defining how they engage with environmental variation and trophic interactions. We assess daily activity responses to long‐term variation in temperature, resources and mating opportunities to examine whether individuals choose to be active or inactive according to an optimisation of the relative energetic and reproductive gains each state offers. We show that this simplified behavioural decision approach predicts most activity variation (R2 = 0.83) expressed by free‐ranging red squirrels over 4 years, as quantified through accelerometer recordings (489 deployments; 5066 squirrel‐days). Recognising activity as a determinant of energetic status, the predictability of activity variation aggregated at a daily scale, and the clear signal that behaviour is environmentally forced through optimisation of gain, provides an integrated approach to examine behavioural variation as an intermediary between environmental variation and energetic, life‐history and ecological outcomes.By assessing daily activity responses to long‐term variation in temperature, resources, and mating opportunities, we examine whether individuals choose to be active or inactive according to an optimization of energetic and reproductive gains. This simplified behavioural decision approach predicts most daily activity variation (R2 = 0.83) expressed by free‐ranging red squirrels over four years, as quantified through accelerometer recordings. Here we provide an integrated approach to examine behavioural variation as an intermediary between environmental variation and energetic, life‐history, and ecological outcomes.
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier Academic Press
dc.subject.otheroptimal behaviour
dc.subject.otherAccelerometer
dc.subject.otherbehaviour
dc.subject.otherdecision‐making
dc.subject.otherenergetic gain
dc.subject.otherhoarding
dc.subject.othermetabolic ecology
dc.subject.otherTamiasciurus hudsonicus
dc.titleOptimisation of energetic and reproductive gains explains behavioural responses to environmental variation across seasons and years
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154889/1/ele13494_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154889/2/ele13494.pdf
dc.identifier.doi10.1111/ele.13494
dc.identifier.sourceEcology Letters
dc.identifier.citedreferenceMathot, K.J. & Dingemanse, N.J. ( 2015 ). Energetics and behavior: unrequited needs and new directions. Trends in Ecology & Evolution, 30, 199 – 206. https://doi.org/10.1016/J.TREE.2015.01.010.
dc.identifier.citedreferenceKrebs, C.J., Boonstra, R., Boutin, S., Sinclair, A.R.E., Smith, J.N.M., Scott Gilbert, B. et al. ( 2014 ). Trophic dynamics of the boreal forests of the kluane region. Arctic, 67, 71 – 81, https://doi.org/10.14430/arctic.2012.12‐109.
dc.identifier.citedreferenceLaMontagne, J.M., Peters, S. & Boutin, S. ( 2005 ). A visual index for estimating cone production for individual white spruce trees. Canadian Journal of Forest Research, 35, 3020 – 3026. https://doi.org/10.1139/X05‐210.
dc.identifier.citedreferenceLane, J.E., Boutin, S., Gunn, M.R. & Coltman, D.W. ( 2009 ). Sexually selected behaviour: red squirrel males search for reproductive success. Journal of Animal Ecology, 78, 296 – 304. https://doi.org/10.1111/j.1365‐2656.2008.01502.x.
dc.identifier.citedreferenceLane, J.E., Boutin, S., Speakman, J.R. & Humphries, M.M. ( 2010 ). Energetic costs of male reproduction in a scramble competition mating system. Journal of Animal Ecology, 79, 27 – 34. https://doi.org/10.1111/j.1365‐2656.2009.01592.x.
dc.identifier.citedreferenceLescroël, A., Ballard, G., Toniolo, V., Barton, K.J., Wilson, P.R., Lyver, P. et al. ( 2010 ). Working less to gain more: when breeding quality relates to foraging efficiency. Ecology, 91 ( 7 ), 2044 – 2055.
dc.identifier.citedreferenceLevitis, D.A., Lidicker, W.Z. & Freund, G. ( 2009 ). Behavioural biologists do not agree on what constitutes behaviour. Animal Behaviour, 78, 103 – 110. https://doi.org/10.1016/J.ANBEHAV.2009.03.018.
dc.identifier.citedreferenceLichti, N.I., Steele, M.A. & Swihart, R.K. ( 2017 ). Seed fate and decision‐making processes in scatter‐hoarding rodents. Biol. Rev, 92, 474 – 504. https://doi.org/10.1111/brv.12240.
dc.identifier.citedreferenceLima, S. & Dill, L. ( 1990 ). Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology, 68, 619 – 640.
dc.identifier.citedreferenceLone, K., Mysterud, A., Gobakken, T., Odden, J., Linnell, J. & Loe, L.E. ( 2016 ). Temporal variation in habitat selection breaks the catch‐22 of spatially contrasting predation risk from multiple predators. Oikos, 126, 624 – 632. https://doi.org/10.1111/oik.03486.
dc.identifier.citedreferenceLuttbeg, B., Rowe, L. & Mangel, M. ( 2003 ). Prey state and experimental design affect relative size of trait‐and density‐mediated indirect effects. Ecology, 84, 1140 – 1150.
dc.identifier.citedreferenceMartin, P. & Bateson, G. ( 1993 ). Measuring Behaviour: An Introductory Guide. Cambridge University Press, Cambridge.
dc.identifier.citedreferenceMcAdam, A.G., Boutin, S., Sykes, A.K. & Humphries, M.M. ( 2007 ). Life histories of female red squirrels and their contributions to population growth and lifetime fitness. Écoscience, 14, 362 – 369. https://doi.org/10.2307/42902046.
dc.identifier.citedreferenceMcNamara, J.M. & Houston, A.I. ( 1987 ). Starvation and predation as factors limiting population size. Ecology, 68, 1515 – 1519.
dc.identifier.citedreferenceMueller, P. & Diamond, J. ( 2001 ). Metabolic rate and environmental productivity: Well‐provisioned animals evolved to run and idle fast. PNAS, 23, 12550 – 12554.
dc.identifier.citedreferenceMurray, I.W. & Smith, F.A. ( 2012 ). Estimating the influence of the thermal environment on activity patterns of the desert woodrat ( Neotoma lepida ) using temperature chronologies. Canadian Journal of Zoology, 90, 1171 – 1180. https://doi.org/10.1139/z2012‐084.
dc.identifier.citedreferencePauls, R.W. ( 1977 ). Behavioural strategies relevant to the energy economy of the red squirrel (Tamiasciurus hudsonicus). Canadian Journal of Zoology, 56, 1519 – 1525.
dc.identifier.citedreferencePost, D.M., Conners, M.E. & Goldberg, D.S. ( 2000 ). Prey preference by a top predator and the stability of linked food chains. Ecology, 81, 8 – 14. https://doi.org/10.1890/0012‐9658(2000)081[0008:PPBATP]2.0.CO;2.
dc.identifier.citedreferencePyke, G.H., Pulliam, H.R. & Charnov, E.L. ( 1977 ). Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology, 52 ( 2 ), 137 – 154.
dc.identifier.citedreferenceReal, L. ( 1990 ). Search theory and mate choice. I. Models of single‐sex discrimination. The American Naturalist, 136, 376 – 405.
dc.identifier.citedreferenceRezende, E., Gomes, F., Chappell, M. & Garland, T. Jr ( 2009 ). Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity. Physiological and Biochemical Zoology2, 82, 662 – 679.
dc.identifier.citedreferenceScholander, P.F., Hock, R., Walters, V. & Irving, L. ( 1950 ). Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biological Bulletin, 99, 259 – 271.
dc.identifier.citedreferenceScholander, P.F., Hock, R., Walters, V. & Johnson, F. ( 1950 ). Heat regulation in some arctic and tropical mammals and birds. Biological Bulletin, 99, 237 – 258.
dc.identifier.citedreferenceStudd, E.K., Boutin, S., McAdam, A.G. & Humphries, M.M. ( 2016 ). Nest attendance of lactating red squirrels (Tamiasciurus hudsonicus): influences of biological and environmental correlates. Journal of Mammalogy, 97, 806 – 814. https://doi.org/10.1093/jmammal/gyw010.
dc.identifier.citedreferenceStudd, E.K., Boudreau, M.R., Majchrzak, Y.N., Menzies, A.K., Peers, M.J.L., Seguin, J.L., et al. ( 2019 ). Use of acceleration and acoustics to classify behavior, generate time budgets, and evaluate responses to moonlight in free‐ranging snowshoe hares. Frontiers in Ecology and Evolution, 7, 154. https://doi.org/10.3389/fevo.2019.00154.
dc.identifier.citedreferenceStudd, E.K., Landry‐Cuerrier, M., Menzies, A.K., Boutin, S., McAdam, A.G., Lane, J.E., et al. ( 2019 ). Behavioral classification of low‐frequency acceleration and temperature data from a free‐ranging small mammal. Ecology and Evolution, 9, 619 – 630. https://doi.org/10.1002/ece3.4786.
dc.identifier.citedreferenceTatler, J., Cassey, P. & Prowse, T.A.A. ( 2018 ). High accuracy at low frequency: detailed behavioural classification from accelerometer data. Journal of Experimental Biology, 221. https://doi.org/10.1242/jeb.184085.
dc.identifier.citedreferenceWerner, E.E. & Anholt, B.R. ( 1993 ). Ecological consequences of the trade‐off between growth and mortality rates mediated. The American Naturalist, 142, 242 – 272.
dc.identifier.citedreferenceWilliams, C.M., Henry, H.A.L. & Sinclair, B.J. ( 2015 ). Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90, 214 – 235.
dc.identifier.citedreferenceWilliams, C.T., Barnes, B.M. & Buck, C.L. ( 2016 ). Integrating physiology, behavior, and energetics: Biologging in a free‐living arctic hibernator. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 202, 53 – 62. https://doi.org/10.1016/J.CBPA.2016.04.020.
dc.identifier.citedreferenceYodzis, P. & Innes, S. ( 1992 ). Body size and consumer‐resource dynamics. The American Naturalist, 139, 1151 – 1175.
dc.identifier.citedreferenceLevin, S.A. ( 1992 ). The problem of pattern and scale in ecology. Ecology, 73, 1943 – 1967.
dc.identifier.citedreferenceAltmann, S.A. & Altmann, J. ( 2006 ). The transformation of behaviour field studies. In: Essays in Animal Behaviour: Celebrating 50 Years of Animal Behaviour (eds Lucas, J.R. & Simmons, L.W. ). Elsevier Academic Press, Burlington, MA, pp. 57 – 80.
dc.identifier.citedreferenceArchibald, D.W., Fletcher, Q.E., Boutin, S., McAdam, A.G., Speakman, J.R. & Humphries, M.M. ( 2013 ). Sex‐specific hoarding behavior in North American red squirrels (Tamiasciurus hudsonicus). Journal of Mammalogy, 94, 761 – 770. https://doi.org/10.1644/12‐MAMM‐A‐213.1.
dc.identifier.citedreferenceBaum, W.M. ( 2013 ). What counts as behavior? The molar multiscale view. The Behavior Analyst, 36, 283 – 293.
dc.identifier.citedreferenceBiro, P.A. & Stamps, J.A. ( 2010 ). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology & Evolution, 25, 653 – 659.
dc.identifier.citedreferenceBoggs, C. ( 1992 ). Resource allocation: exploring connections between foraging and life history. Functional Ecology, 6, 508 – 518.
dc.identifier.citedreferenceBoonstra, R., Dušek, A., Lane, J. & Boutin, S. ( 2017 ). When the ball is in the female’s court: How the scramble‐competition mating system of the North American red squirrel has shaped male physiology and testosterone dynamics. General and Comparative Endocrinology, 252, 162 – 172.
dc.identifier.citedreferenceBrown, J.S. ( 1992 ). Patch use under predation risk: I. Models and predictions. Ann. Zool. Fennici, 29, 301 – 309.
dc.identifier.citedreferenceBrown, J.S., Laundre, J. & Gurung, M. ( 1999 ). The ecology of fear: Optimal foraging, game theory, and trophic interactions. Journal of Mammalogy, 80, 385 – 399. https://doi.org/10.2307/1383287.
dc.identifier.citedreferenceBrown, J.H., Gillooly, J., Allen, A.P., Savage, V.M. & West, G.B. ( 2004 ). Toward a metabolic theory of ecology. Ecology, 85, 1771 – 1789. https://doi.org/10.1890/03‐9000@10.1002/(ISSN)1939‐9170.MACARTHURAWARD.
dc.identifier.citedreferenceCareau, V., Thomas, D., Humphries, M.M. & Réale, D. ( 2008 ). Energy metabolism and animal personality. Oikos, 117, 641 – 653. https://doi.org/10.1111/j.2008.0030‐1299.16513.x.
dc.identifier.citedreferenceCareau, V., Thomas, D., Pelletier, F., Turki, L., Landry, F., Garant, D. et al. ( 2011 ). Genetic correlation between resting metabolic rate and exploratory behaviour in deer mice (Peromyscus maniculatus). Journal of Evolutionary Biology, 2 ), 2153 – 2163.
dc.identifier.citedreferenceDaly, M. ( 1978 ). The cost of mating. The American Natualist, 112, 771 – 774.
dc.identifier.citedreferenceDiaz, M., Torre, I., Peris, A. & Tena, L. ( 2005 ). Foraging behavior of wood mice as related to presence and activity of genets. Journal of Mammalogy, 86, 1178 – 1185.
dc.identifier.citedreferenceDidan, K. ( 2015 ). MOD13A1 MODIS/terra vegetation indices 16‐Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD13A1.006.
dc.identifier.citedreferenceEmlen, J. ( 1966 ). The role of time and energy in food preference. The American Naturalist, 100, 611 – 617.
dc.identifier.citedreferenceFernandez‐Duque, E. ( 2003 ). Influences of moonlight, ambient temperature, and food availability on the diurnal and nocturnal activity of owl monkeys (Aotus azarai ). Behavioral Ecology and Sociobiology, 54, 431 – 440. https://doi.org/10.1007/s00265‐003‐0637‐9.
dc.identifier.citedreferenceFisher, D.N., Haines, J.A., Boutin, S., Dantzer, B., Lane, J.E., Coltman, D.W. & et al. ( 2019 ). Indirect effects on fitness between individuals that have never met via an extended phenotype. Ecology Letters, 22, 697 – 706, https://doi.org/10.1111/ele.13230.
dc.identifier.citedreferenceFletcher, Q.E., Boutin, S., Lane, J.E., Lamontagne, J.M., McAdam, A.G., Krebs, C.J. et al. ( 2010 ). The functional response of a hoarding seed predator to mast seeding. Ecology, 91, 2673 – 2683.
dc.identifier.citedreferenceFletcher, Q.E., Landry‐Cuerrier, M., Boutin, S., McAdam, A.G., Speakman, J.R. & Humphries, M.M. ( 2013 ). Reproductive timing and reliance on hoarded capital resources by lactating red squirrels. Oecologia, 173, 1203 – 1215. https://doi.org/10.1007/s00442‐013‐2699‐3.
dc.identifier.citedreferenceFoley, A.M., Hewitt, D.G., Deyoung, R.W., Schnupp, M. J., Hellickson, M.W., & Schnupp, M.J. ( 2018 ). Reproductive effort and success of males in scramble‐competition polygyny: Evidence for trade‐offs between foraging and mate search Present addresses. J. Anim. Ecol., 87, 1600 – 1614. https://doi.org/10.1111/1365‐2656.12893.
dc.identifier.citedreferenceGerber, L.R., Reichman, O.J. & Roughgarden, J. ( 2004 ). Food hoarding: future value in optimal foraging decisions. Ecological Modelling, 175, 77 – 85. https://doi.org/10.1016/j.ecolmodel.2003.10.022.
dc.identifier.citedreferenceGill, A.B. ( 2003 ). The dynamics of prey choice in fish: the importance of prey size and satiation. Journal of Fish Biology, 63 ( s1 ), 105 – 116. https://doi.org/10.1111/j.1095‐8649.2003.00214.x.
dc.identifier.citedreferenceGuillemette, C.U., Fletcher, Q.E., Boutin, S., Hodges, R.M., McAdam, A.G. & Humphries, M.M. ( 2009 ). Lactating red squirrels experiencing high heat load occupy less insulated nests. Biology Letters, 5 ( 2 ), 166 – 8. https://doi.org/10.1098/rsbl.2008.0592.
dc.identifier.citedreferenceHall, L.E. & Chalfoun, A.D. ( 2019 ). Behavioural plasticity modulates temperature‐related constraints on foraging time for a montane mammal. Journal of Animal Ecology, 88 ( 3 ), 363 – 375. https://doi.org/10.1111/1365‐2656.12925.
dc.identifier.citedreferenceHughes, J.J., Ward, D. & Perrin, M.R. ( 1994 ). Predation risk and competition affect habitat selection and activity of namib desert gerbils. Ecology, 75 ( 5 ), 1397 – 1405.
dc.identifier.citedreferenceHumphries, M.M. & Careau, V. ( 2011 ). Heat for nothing or activity for free? Evidence and implications of activity‐thermoregulatory heat substitution. Integrative and Comparative Biology, 51 ( 3 ), 419 – 431.
dc.identifier.citedreferenceHumphries, M.M. & McCann, K.S. ( 2014 ). Metabolic ecology. Journal of Animal Ecology, 83 ( 1 ), 7 – 19. https://doi.org/10.1111/1365‐2656.12124.
dc.identifier.citedreferenceHumphries, M.M. & Umbanhowar, J. ( 2007 ). Filtering environmental variability: activity optimization, thermal refuges, and the energetic responses of endotherms to temperature. In: The Impact of Environmental Variability on Ecological Systems (eds Vasseur, D. & McCann, K. ). Springer, Dordecht, pp. 61 – 87. https://doi.org/10.1007/978‐1‐4020‐5851‐6_4.
dc.identifier.citedreferenceHumphries, M.M., Boutin, S., Thomas, D.W., Ryan, J.D., Selman, C., McAdam, A.G. et al. ( 2005 ). Expenditure freeze: the metabolic response of small mammals to cold environments. Ecology Letters, 8, 1326 – 1333. https://doi.org/10.1111/j.1461‐0248.2005.00839.x.
dc.identifier.citedreferenceKam, M. & Degen, A.A. ( 1997 ). Energy requirements and the efficiency of utilization of metabolizable energy in free‐living animals: evaluation of existing theories and generation of a new model. Journal of Theoretical Biology, 184 ( 2 ), 101 – 104. https://doi.org/10.1006/jtbi.1996.0279.
dc.identifier.citedreferenceKays, R., Crofoot, M.C., Jetz, W. & Wikelski, M. ( 2015 ). Terrestrial animal tracking as an eye on life and planet. Science, 348, https://doi.org/10.1126/science.aaa2478.
dc.identifier.citedreferenceKing, J. & Murphy, M. ( 1985 ). Periods of nutritional stress in the annual cycles of endotherms: fact or fiction? American Zoologist, 25, 955 – 964.
dc.identifier.citedreferenceKohl, M., Stahler, D., Metz, M., Forester, J., Kauffman, M., Varley, N. et al. ( 2018 ). Diel predator activity drives a dynamic landscape of fear. Ecological Monographs, 88, 638 – 652.
dc.identifier.citedreferenceKramer, D. ( 2001 ). Foraging behavior. In: Evolutionary Ecology Concepts and Case Studies (eds Fox, C.W., Roff, D.A., & Fairbairn, D.J. ). Oxford University Press. New York.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.