Show simple item record

The mortality burden attributable to nontrauma fracture for privately insured adults with epilepsy

dc.contributor.authorWhitney, Daniel G.
dc.contributor.authorBell, Sarah
dc.contributor.authorMcNamara, Nancy A.
dc.contributor.authorHurvitz, Edward A.
dc.date.accessioned2020-05-05T19:34:01Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:34:01Z
dc.date.issued2020-04
dc.identifier.citationWhitney, Daniel G.; Bell, Sarah; McNamara, Nancy A.; Hurvitz, Edward A. (2020). "The mortality burden attributable to nontrauma fracture for privately insured adults with epilepsy." Epilepsia 61(4): 714-724.
dc.identifier.issn0013-9580
dc.identifier.issn1528-1167
dc.identifier.urihttps://hdl.handle.net/2027.42/154895
dc.description.abstractObjectiveIndividuals with epilepsy have poor bone development and preservation throughout the lifespan and are vulnerable to nontrauma fracture (NTFx) and post‐NTFx complications. However, no studies have examined the contribution of NTFx to mortality among adults with epilepsy. The objective was to determine whether NTFx is a risk factor for mortality among adults with epilepsy.MethodsData from 2011 to 2016 were obtained from Optum Clinformatics Data Mart, a nationwide claims database from a single private payer in the United States. Diagnosis codes were used to identify adults (≥18 years old) with epilepsy, NTFx, and covariates (demographics and pre‐NTFx cardiovascular disease, respiratory disease, diabetes, chronic kidney disease, cancer). Crude mortality rate per 100 person‐years was estimated. Cox regression estimated hazard ratios (HRs) and 95% confidence intervals (CIs) were determined for mortality, comparing epilepsy and NTFx (EP + NTFx; n = 11 471), epilepsy without NTFx (EP without NTFx; n = 50 384), without epilepsy and with NTFx (without EP + NTFx; n = 423 041), and without epilepsy and without NTFx (without EP without NTFx; n = 6.8 million) after adjusting for covariates.ResultsThe 3‐, 6‐, and 12‐month crude mortality rates were highest among EP + NTFx (12‐month mortality rate = 8.79), followed by without EP + NTFx (12‐month mortality rate = 4.80), EP without NTFx (12‐month mortality rate = 3.06), and without EP without NTFx (12‐month mortality rate = 0.47). After adjustments, the mortality rate was elevated for EP + NTFx for all time points compared to EP without NTFx (eg, 12‐month HR = 1.70, 95% CI = 1.58‐1.85), without EP + NTFx (eg, 12‐month HR = 1.41, 95% CI = 1.32‐1.51), and without EP without NTFx (eg, 12‐month HR = 5.23, 95% CI = 4.88‐5.60). Stratified analyses showed higher adjusted HRs of 12‐month mortality for EP + NTFx for all NTFx sites (ie, vertebral column, hip, extremities), all age categories (young, middle‐aged, older), and for both women and men.SignificanceAmong adults with epilepsy and compared to adults without epilepsy, NTFx is associated with a higher 12‐month mortality rate. Findings suggest that NTFx may be a robust risk factor for mortality among adults with epilepsy.
dc.publisherWiley Periodicals, Inc.
dc.subject.othernontrauma fracture
dc.subject.otherepilepsy
dc.subject.othermortality
dc.titleThe mortality burden attributable to nontrauma fracture for privately insured adults with epilepsy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154895/1/epi16465.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154895/2/epi16465_am.pdf
dc.identifier.doi10.1111/epi.16465
dc.identifier.sourceEpilepsia
dc.identifier.citedreferenceChamorro‐Munoz MI, Garcia‐Martin G, Perez‐Errazquin F, Romero‐Acebal M, Garcia‐Rodriguez A, Gutierrez‐Bedmar M. Epidemiological study of mortality in epilepsy in a Spanish population. Seizure. 2017; 46: 19 – 23.
dc.identifier.citedreferenceThurman DJ, Logroscino G, Beghi E, et al. The burden of premature mortality of epilepsy in high‐income countries: a systematic review from the Mortality Task Force of the International League Against Epilepsy. Epilepsia. 2017; 58 ( 1 ): 17 – 26.
dc.identifier.citedreferenceWhitney DG, Alford AI, Devlin MJ, Caird MS, Hurvitz EA, Peterson MD. Adults with cerebral palsy have higher prevalence of fracture compared to adults without cerebral palsy independent of osteoporosis and cardiometabolic diseases. J Bone Miner Res. 2019; 34: 1240 – 7.
dc.identifier.citedreferenceWhitney DG, Whibley D, Jepsen KJ. The effect of low‐trauma fracture on one‐year mortality rate among privately insured adults with and without neurodevelopmental disabilities. Bone. 2019; 129: 115060.
dc.identifier.citedreferenceMoura L, Smith JR, Blacker D, Vogeli C, Schwamm LH, Hsu J. Medicare claims can identify post‐stroke epilepsy. Epilepsy Res. 2019; 151: 40 – 7.
dc.identifier.citedreferenceChang HY, Weiner JP, Richards TM, Bleich SN, Segal JB. Validating the adapted Diabetes Complications Severity Index in claims data. Am J Manag Care. 2012; 18 ( 11 ): 721 – 6.
dc.identifier.citedreferenceHolden EW, Grossman E, Nguyen HT, et al. Developing a computer algorithm to identify epilepsy cases in managed care organizations. Dis Manag. 2005; 8 ( 1 ): 1 – 14.
dc.identifier.citedreferenceKeshishian A, Boytsov N, Burge R, et al. Examining the effect of medication adherence on risk of subsequent fracture among women with a fragility fracture in the U.S. Medicare Population. J Manag Care Spec Pharm. 2017; 23 ( 11 ): 1178 – 90.
dc.identifier.citedreferenceBüchele G, Becker C, Cameron ID, et al. Fracture risk in people with developmental disabilities: results of a large claims data analysis. Osteoporos Int. 2017; 28 ( 1 ): 369 – 75.
dc.identifier.citedreferenceNarongroeknawin P, Patkar NM, Shakoory B, et al. Validation of diagnostic codes for subtrochanteric, diaphyseal, and atypical femoral fractures using administrative claims data. J Clin Densitom. 2012; 15 ( 1 ): 92 – 102.
dc.identifier.citedreferenceWhitney DG. Prevalence of high‐burden medical conditions among young and middle‐aged adults with pediatric‐onset medical conditions: findings from US private and public administrative claims data. Int J Health Policy Manag. 2019; 8 ( 11 ): 629 – 35.
dc.identifier.citedreferenceInoue D, Watanabe R, Okazaki R. COPD and osteoporosis: links, risks, and treatment challenges. Int J Chron Obstruct Pulmon Dis. 2016; 11: 637 – 48.
dc.identifier.citedreferenceCoutinho ES, Bloch KV, Coeli CM. One‐year mortality among elderly people after hospitalization due to fall‐related fractures: comparison with a control group of matched elderly. Cad Saude Publica. 2012; 28 ( 4 ): 801 – 5.
dc.identifier.citedreferenceKeezer MR, Bell GS, Neligan A, Novy J, Sander JW. Cause of death and predictors of mortality in a community‐based cohort of people with epilepsy. Neurology. 2016; 86 ( 8 ): 704 – 12.
dc.identifier.citedreferenceChang C‐Y, Lu T‐H, Cheng T‐J. Trends in reporting injury as a cause of death among people with epilepsy in the U.S., 1981–2010. Seizure. 2014; 23 ( 10 ): 836 – 43.
dc.identifier.citedreferenceSchousboe JT. Mortality after osteoporotic fractures: what proportion is caused by fracture and is preventable? J Bone Miner Res. 2017; 32 ( 9 ): 1783 – 8.
dc.identifier.citedreferenceKatsoulis M, Benetou V, Karapetyan T, et al. Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med. 2017; 281 ( 3 ): 300 – 10.
dc.identifier.citedreferenceTosteson AN, Gottlieb DJ, Radley DC, Fisher ES, Melton LJ III. Excess mortality following hip fracture: the role of underlying health status. Osteoporos Int. 2007; 18 ( 11 ): 1463 – 72.
dc.identifier.citedreferenceBliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low‐trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009; 301 ( 5 ): 513 – 21.
dc.identifier.citedreferenceMathur MB, Ding P, Riddell CA, VanderWeele TJ. Website and R package for computing E‐values. Epidemiology. 2018; 29 ( 5 ): e45 – 7.
dc.identifier.citedreferenceVanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E‐value. Ann Intern Med. 2017; 167 ( 4 ): 268 – 74.
dc.identifier.citedreferenceVestergaard P, Tigaran S, Rejnmark L, Tigaran C, Dam M, Mosekilde L. Fracture risk is increased in epilepsy. Acta Neurol Scand. 1999; 99 ( 5 ): 269 – 75.
dc.identifier.citedreferenceMcNamara NA, Romanowski EMF, Olson DP, Shellhaas RA. Bone health and endocrine comorbidities in pediatric epilepsy. Semin Pediatr Neurol. 2017; 24 ( 4 ): 301 – 9.
dc.identifier.citedreferenceGniatkowska‐Nowakowska A. Fractures in epilepsy children. Seizure. 2010; 19 ( 6 ): 324 – 5.
dc.identifier.citedreferenceCoppola G, Fortunato D, Auricchio G, et al. Bone mineral density in children, adolescents, and young adults with epilepsy. Epilepsia. 2009; 50 ( 9 ): 2140 – 6.
dc.identifier.citedreferenceBeerhorst K, Tan IY, De Krom M, Verschuure P, Aldenkamp AP. Antiepileptic drugs and high prevalence of low bone mineral density in a group of inpatients with chronic epilepsy. Acta Neurol Scand. 2013; 128 ( 4 ): 273 – 80.
dc.identifier.citedreferenceFedorenko M, Wagner ML, Wu BY. Survey of risk factors for osteoporosis and osteoprotective behaviors among patients with epilepsy. Epilepsy Behav. 2015; 45: 217 – 22.
dc.identifier.citedreferenceVestergaard P. Epilepsy, osteoporosis and fracture risk—a meta‐analysis. Acta Neurol Scand. 2005; 112 ( 5 ): 277 – 86.
dc.identifier.citedreferenceNeuman MD, Silber JH, Magaziner JS, Passarella MA, Mehta S, Werner RM. Survival and functional outcomes after hip fracture among nursing home residents. JAMA Intern Med. 2014; 174 ( 8 ): 1273 – 80.
dc.identifier.citedreferenceVeronese N, Stubbs B, Crepaldi G, et al. Relationship between low bone mineral density and fractures with incident cardiovascular disease: a systematic review and meta‐analysis. J Bone Miner Res. 2017; 32 ( 5 ): 1126 – 35.
dc.identifier.citedreferenceHarvey‐Kelly KF, Kanakaris NK, Obakponovwe O, West RM, Giannoudis PV. Quality of life and sexual function after traumatic pelvic fracture. J Orthop Trauma. 2014; 28 ( 1 ): 28 – 35.
dc.identifier.citedreferenceKumar A, Rahman M, Trivedi AN, Resnik L, Gozalo P, Mor V. Comparing post‐acute rehabilitation use, length of stay, and outcomes experienced by Medicare fee‐for‐service and Medicare Advantage beneficiaries with hip fracture in the United States: a secondary analysis of administrative data. PLoS Med. 2018; 15 ( 6 ): e1002592.
dc.identifier.citedreferenceUriz‐Otano F, Pla‐Vidal J, Tiberio‐Lopez G, Malafarina V. Factors associated to institutionalization and mortality over three years, in elderly people with a hip fracture—an observational study. Maturitas. 2016; 89: 9 – 15.
dc.identifier.citedreferenceWeatherburn CJ, Heath CA, Mercer SW, Guthrie B. Physical and mental health comorbidities of epilepsy: population‐based cross‐sectional analysis of 1.5 million people in Scotland. Seizure. 2017; 45: 125 – 31.
dc.identifier.citedreferencePham T, Sauro KM, Patten SB, et al. The prevalence of anxiety and associated factors in persons with epilepsy. Epilepsia. 2017; 58 ( 8 ): e107 – 10.
dc.identifier.citedreferenceScott AJ, Sharpe L, Hunt C, Gandy M. Anxiety and depressive disorders in people with epilepsy: a meta‐analysis. Epilepsia. 2017; 58 ( 6 ): 973 – 82.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.