Show simple item record

β‐Mannosylation through O‐Alkylation of Anomeric Cesium Alkoxides: Mechanistic Studies and Synthesis of the Hexasaccharide Core of Complex Fucosylated N‐Linked Glycans

dc.contributor.authorMeng, Shuai
dc.contributor.authorBhetuwal, Bishwa Raj
dc.contributor.authorNguyen, Hai
dc.contributor.authorQi, Xiaotian
dc.contributor.authorFang, Cheng
dc.contributor.authorSaybolt, Kevin
dc.contributor.authorLi, Xiaohua
dc.contributor.authorLiu, Peng
dc.contributor.authorZhu, Jianglong
dc.date.accessioned2020-05-05T19:34:20Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:34:20Z
dc.date.issued2020-04-23
dc.identifier.citationMeng, Shuai; Bhetuwal, Bishwa Raj; Nguyen, Hai; Qi, Xiaotian; Fang, Cheng; Saybolt, Kevin; Li, Xiaohua; Liu, Peng; Zhu, Jianglong (2020). "β‐Mannosylation through O‐Alkylation of Anomeric Cesium Alkoxides: Mechanistic Studies and Synthesis of the Hexasaccharide Core of Complex Fucosylated N‐Linked Glycans." European Journal of Organic Chemistry 2020(15): 2291-2301.
dc.identifier.issn1434-193X
dc.identifier.issn1099-0690
dc.identifier.urihttps://hdl.handle.net/2027.42/154903
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press
dc.subject.otherSynthetic methods
dc.subject.otherGlycosylation
dc.subject.otherCarbohydrates
dc.subject.otherGlycans
dc.subject.otherMannosylation
dc.titleβ‐Mannosylation through O‐Alkylation of Anomeric Cesium Alkoxides: Mechanistic Studies and Synthesis of the Hexasaccharide Core of Complex Fucosylated N‐Linked Glycans
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154903/1/ejoc202000313.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154903/2/ejoc202000313-sup-0001-SupMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154903/3/ejoc202000313_am.pdf
dc.identifier.doi10.1002/ejoc.202000313
dc.identifier.sourceEuropean Journal of Organic Chemistry
dc.identifier.citedreferenceA small amount of side product, 3,4,6‐tri‐ O ‐benzyl‐D‐fructose 37 (Table ), was always detected in all of the previous anomeric O ‐alkylation reactions involving 3,4,6‐tri‐ O ‐benzyl‐D‐mannose 7 as the lactol donor. Presumably, 37 was obtained via an α ‐keto rearrangement of the open aldehyde intermediate derived from lactol 7.
dc.identifier.citedreferenceExtensive NMR studies of anomeric cesium alkoxide ( 45 ) at room temperature or 40 °C did not show much difference.
dc.identifier.citedreferenceM. T. Yang and K. A. Woerpel, J. Org. Chem, 2009, 74, 545 – 553.
dc.identifier.citedreferenceI. S. Aidhen and N. Satyamurthi, Indian J. Chem. Sect. B 2008, 47B, 1851 – 1857.
dc.identifier.citedreferenceSee Supporting Information for details.
dc.identifier.citedreferenceSee Supporting Information for additional direct competition experiments that produce similar results when allyl bromide is used as the electrophile.
dc.identifier.citedreferenceV. S. Borodkin, M. A. J. Ferguson and A. V. Nikolaev, Tetrahedron Lett, 2001, 42, 5305 – 5308.
dc.identifier.citedreferenceFor examples of using conformationally restricted o ‐xylylene protecting group in carbohydrate synthesis, see: a) A. J. Poss and M. S. Smyth, Synth. Commun, 1989, 19, 3363 – 3366. b) P. Balbuena, E. M. Rubio, C. O. Mellet and J. M. G. Fernández, Chem. Commun, 2006, 2610 – 2612; c) A. Imamura and T. L. Lowary, Org. Lett, 2010, 12, 3686 – 3689; d) Y. Okada, N. Asakura, M. Bando, Y. Ashikaga and H. Yamada, J. Am. Chem. Soc, 2012, 134, 6940 – 6943; e) N. Asakura, A. Motoyama, T. Uchino, K. Tanigawa and H. Yamada, J. Org. Chem, 2013, 78, 9482 – 9487; f) T. Uchino, Y. Tomabechi, A. Fukumoto and H. Yamada, Carbohydr. Res, 2015, 402, 118 – 123; g) L. Zhang, K. Shen, H. A. Taha and T. L. Lowary, J. Org. Chem, 2018, 83, 7659 – 7671.
dc.identifier.citedreferenceWhen 2,6‐anhydro‐3,4‐di‐ O ‐benzyl‐D‐mannose 20 was subjected to anomeric O ‐alkylation, the formation of corresponding disaccharide 35 was not observed, instead an enal ( ref. S19, Supporting Information) was isolated in 50 % yield. Presumably, enal was formed via deprotonation of anomeric hydroxyl of 20 followed by ring opening, enolization, and elimination of C3‐benzyloxy group.
dc.identifier.citedreferenceThis cesium carbonate‐mediated β ‐mannosylation via anomeric O ‐alkylation gives comparable results in 1,2‐dichloroethane (DCE) and chloroform (CHCl 3 ).
dc.identifier.citedreferenceT. Sawada, S. Fujii, H. Nakano, S. Ohtake, K. Kimata and O. Habuchi, Carbohydr. Res, 2005, 340, 1983 – 1996.
dc.identifier.citedreferenceE. Watson, A. Bhide and H. van Halbeek, Glycobiology, 1994, 4, 227 – 237.
dc.identifier.citedreferenceF.‐T. A. Chen and R. A. Evangelista, Electrophoresis 1998, 19, 2639 – 2644.
dc.identifier.citedreferencea) P. J. Johnson, T. C. W. Poon, N. M. Hjelm, C. S. Ho, S. K. W. Ho, C. Welby, D. Stevenson, T. Patel, R. Parekh and R. R. Townsend, Br. J. Cancer 1999, 81, 1188 – 1195; b) K. Taketa, Electrophoresis, 1998, 19, 2595 – 2602.
dc.identifier.citedreferencea) B. Wu, Z. Hua, J. D. Warren, K. Ranganathan, Q. Wan, G. Chen, Z. Tan, J. Chen, A. Endo and S. J. Danishefsky, Tetrahedron Lett, 2006, 47, 5577 – 5579; b) B. Wu, Z. Tan, G. Chen, J. Chen, Z. Hua, Q. Wan, K. Ranganathan and S. J. Danishefsky, Tetrahedron Lett, 2006, 47, 8009 – 8011; c) B. Sun, B. Srinivasan and X. Huang, Chem. Eur. J, 2008, 14, 7072 – 7081; d) P. Nagorny, B. Fasching, X. Li, G. Chen, B. Aussedat and S. J. Danishefsky, J. Am. Chem. Soc, 2009, 131, 5792 – 5799.
dc.identifier.citedreferenceT. Katoh, T. Katayama, Y. Tomabechi, Y. Nishikawa, J. Kumada, Y. Matsuzaki and K. Yamamoto, J. Biol. Chem, 2016, 291, 23305 – 23317.
dc.identifier.citedreferenceDeprotonation of C2‐OH is not required for this anomeric O ‐alkylation to occur, as anomeric O‐alkylation of 2,3,4,6‐tetra‐ O ‐benzyl‐D‐mannopyranose also afford the desired β‐mannoside in good yield and anomeric selectivity. However, we can not rule out the possibility that the C2‐OH of mannose is deprotonated in a thermodynamically unfavorable, rate‐limiting step to generate a bis‐alkoxide which is rapidly alkylated at the anomeric position. We sincerely thank one of the reviewers for pointing this out.
dc.identifier.citedreferenceWhether the C2‐OH of intermediates 52 and 54 is deprotonated or not can not be concluded from the 1 H NMR data; however, it is believed that it remains mainly as undeprotonated form in consideration of its p K a value. In addition, our experimental analysis of the weight of cesium alkoxide 42 is consistent with the presence of one cesium ion in the majority component.
dc.identifier.citedreferenceThe chelating Cs–O distances in the optimized structures are typically shorter than 3 Å, which indicates relatively strong interactions, see: O. C. Gagné and F. C. Hawthorne, Acta Crystallogr., Sect. B Struct. Sci, 2018, 74, 63 – 78.
dc.identifier.citedreferenceComputationally it is not feasible to accurately model the deprotonation using the experimentally used base Cs 2 CO 3, which does not completely dissolve under the experimental conditions. Here, using 7‐Cs as the model base will not affect the relative acidity trend.
dc.identifier.citedreferencea) H. Xu, K. Muto, J. Yamaguchi, C. Zhao, K. Itami and D. G. Musaev, J. Am. Chem. Soc, 2014, 136, 14834 – 14844; b) D. M. Walden, A. A. Jaworski, R. C. Johnston, M. T. Hovey, H. V. Baker, M. P. Meyer, K. A. Scheidt and P. H. Y. Cheong, J. Org. Chem, 2017, 82, 7183 – 7189; c) M. Anand, R. B. Sunoj and H. F. Schaefer III, J. Am. Chem. Soc, 2014, 136, 5535 – 5538.
dc.identifier.citedreferenceAlthough the data prove that monomeric cesium alkoxide 42 β should be the real reactive species for this anomeric O ‐alkylation at 0.1–0.2 M of initial concentration of mannose 7, other forms of cesium alkoxide 42 β, e.g., dimeric form, can not be ruled out at higher concentration.
dc.identifier.citedreferenceAttempted crystallization of anomeric alkoxides 42, 45, and 48 using various solvents or mixed solvents, e.g. dichloromethane, 1,2‐dichloroethane, chloroform, and dichloromethane/ n ‐pentane, was unsuccessful.
dc.identifier.citedreferencea) A. Varki, Glycobiology, 1993, 3, 97 – 130; b) C. R. Bertozzi and L. L. Kiessling, Science, 2001, 291, 2357 – 2364; c) A. Varki, Glycobiology, 2017, 27, 3 – 49.
dc.identifier.citedreferencea) D. F. Wyss, J. S. Choi, J. Li, M. H. Knoppers, K. J. Willis, A. R. N. Arulanandam, A. Smolyar, E. L. Reinherz and G. Wagner, Science, 1995, 269, 1273 – 1278; b) A. C. Weymouth‐Wilson, Nat. Prod. Rep, 1997, 14, 99 – 110; c) V. Kren and L. Martinkova, Curr. Med. Chem, 2001, 8, 1303 – 1328.
dc.identifier.citedreferenceFor select reviews, see: a) P. O. Adero, H. Amarasekara, P. Wen, L. Bohé and D. Crich, Chem. Rev, 2018, 118, 8242 – 8284; b) C. S. Bennett and M. C. Galan, Chem. Rev, 2018, 118, 7931 – 7985; c) J. Zeng, Y. Xu, H. Wang, L. Meng and Q. Wan, Sci. China Chem, 2017, 60, 1162 – 1179; d) X. Li and J. Zhu, Eur. J. Org. Chem, 2016, 2016, 4724 – 4767; e) S. C. Ranade and A. V. Demchenko, J. Carbohydr. Chem, 2013, 32, 1 – 43; f) M. J. McKay and H. M. Nguyen, ACS Catal, 2012, 2, 1563 – 1595; g) X. Li and J. Zhu, J. Carbohydr. Chem, 2012, 31, 284 – 324; h) X. Zhu and R. R. Schmidt, Angew. Chem. Int. Ed, 2009, 48, 1900 – 1934; Angew. Chem, 2009, 121, 1932 – 1967; i) A. V. Demchenko, Editor (Eds.), in: Handbook of chemical glycosylation; Advances in stereoselectivity and therapeutic relevance, 2008, pp. 501; j) P. Fuegedi, in: The Organic Chemistry of Sugars (Eds.: D. E. Levy and P. Fuegedi ), CRC Press, 2006, pp. 89 – 179; k) D. P. Galonić and D. Y. Gin, Nature, 2007, 446, 1000 – 1007; l) K. Toshima and K. Tatsuta, Chem. Rev, 1993, 93, 1503 – 1531.
dc.identifier.citedreferencea) W. Li, J. B. McArthur and X. Chen, Carbohydr. Res, 2019, 472, 86 – 97; b) L.‐X. Wang and M. N. Amin, Chem. Biol, 2014, 21, 51 – 66.
dc.identifier.citedreferenceJ. J. Gridley and H. M. I. Osborn, J. Chem. Soc., Perkin Trans. 1, 2000, 1471 – 1491.
dc.identifier.citedreferencea) S. S. Nigudkar and A. V. Demchenko, Chem. Sci, 2015, 6, 2687 – 2704; b) A. V. Demchenko, Curr. Org. Chem, 2003, 7, 35 – 79; c) A. V. Demchenko, Synlett, 2003, 1225 – 1240; d) M. Tanaka, A. Nakagawa, N. Nishi, K. Iijima, R. Sawa, D. Takahashi and K. Toshima, J. Am. Chem. Soc, 2018, 140, 3644 – 3651.
dc.identifier.citedreferencea) K. Sasaki and K. Tohda, Tetrahedron Lett, 2018, 59, 496 – 503; b) T. J. Boltje, T. Buskas and G.‐J. Boons, Nat. Chem, 2009, 1, 611 – 622; c) A. Ishiwata, Y. J. Lee and Y. Ito, Org. Biomol. Chem, 2010, 8, 3596 – 3608; d) Y. Zeng and F. Kong, Prog. Chem, 2006, 18, 907 – 926; e) F. Barresi and O. Hindsgaul, in: Modern Methods in Carbohydrate Synthesis (Eds.: S. H. Khan and R. A. O’Neill ), Harwood Academic Publishers: Amsterdam, 1996, p. 251 – 276; f) H. Paulsen, Angew. Chem. Int. Ed. Engl, 1982, 21, 155 – 173; Angew. Chem, 1982, 94, 184 – 201.
dc.identifier.citedreferencea) R. R. Schmidt and J. Michel, Tetrahedron Lett, 1984, 25, 821 – 824; b) R. R. Schmidt, Angew. Chem. Int. Ed. Engl, 1986, 25, 212 – 235; Angew. Chem, 1986, 98, 213 – 236; c) R. R. Schmidt, Pure Appl. Chem, 1989, 61, 1257 – 1270; d) R. R. Schmidt and W. Klotz, Synlett, 1991, 168 – 170; e) Y. E. Tsvetkov, W. Klotz and R. R. Schmidt, Liebigs Ann. Chem, 1992, 371 – 375; f) R. R. Schmidt, Front. Nat. Prod. Res, 1996, 1, 20 – 54.
dc.identifier.citedreferencea) S. S. Pertel, O. A. Gorkunenko, E. S. Kakayan and V. J. Chirva, Carbohydr. Res, 2011, 346, 685 – 688; b) D. A. Ryan and D. Y. Gin, J. Am. Chem. Soc, 2008, 130, 15228 – 15229; c) W. J. Morris and M. D. Shair, Org. Lett, 2009, 11, 9 – 12; d) G. Trewartha, J. N. Burrows and A. G. M. Barrett, Tetrahedron Lett, 2005, 46, 3553 – 3556; e) B. Vauzeilles, B. Dausse, S. Palmier and J.‐M. Beau, Tetrahedron Lett, 2001, 42, 7567 – 7570; f) S. Izumi, Y. Kobayashi and Y. Takemoto, Org. Lett, 2019, 21, 665 – 670.
dc.identifier.citedreferencea) R. R. Schmidt and M. Reichrath, Angew. Chem. Int. Ed. Engl, 1979, 18, 466 – 467; Angew. Chem, 1979, 91, 497; b) R. R. Schmidt, M. Reichrath and U. Moering, Tetrahedron Lett, 1980, 21, 3561 – 3564; c) J. Tamura and R. R. Schmidt, J. Carbohydr. Chem, 1995, 14, 895 – 911; d) R. R. Schmidt, U. Moering and M. Reichrath, Chem. Ber, 1982, 115, 39 – 49.
dc.identifier.citedreferenceD. Zhu, K. N. Baryal, S. Adhikari and J. Zhu, J. Am. Chem. Soc, 2014, 136, 3172 – 3175.
dc.identifier.citedreferenceD. Zhu, S. Adhikari, K. N. Baryal, B. N. Abdullah and J. Zhu, J. Carbohydr. Chem, 2014, 33, 438 – 451.
dc.identifier.citedreferenceH. Nguyen, D. Zhu, X. Li and J. Zhu, Angew. Chem. Int. Ed, 2016, 55, 4767 – 4771; Angew. Chem, 2016, 128, 4845 – 4849.
dc.identifier.citedreferenceD. Takahashi, Trends Glycosci. Glycotechnol, 2016, 28, E119 – E120.
dc.identifier.citedreferenceX. Li, N. Berry, K. Saybolt, U. Ahmed and Y. Yuan, Tetrahedron Lett, 2017, 58, 2069 – 2072.
dc.identifier.citedreferenceB. R. Bhetuwal, J. Woodward, X. Li and J. Zhu, J. Carbohydr. Chem, 2017, 36, 162 – 172.
dc.identifier.citedreferencePrevious studies also indicated that due to electron‐electron repulsion anomeric C1‐alkoxide is more nucleophilic than non‐anomeric alkoxide, see: ref.[ 9c ],,.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.