Show simple item record

Improved Internal Wave Spectral Continuum in a Regional Ocean Model

dc.contributor.authorNelson, A. D.
dc.contributor.authorArbic, B. K.
dc.contributor.authorMenemenlis, D.
dc.contributor.authorPeltier, W. R.
dc.contributor.authorAlford, M. H.
dc.contributor.authorGrisouard, N.
dc.contributor.authorKlymak, J. M.
dc.date.accessioned2020-05-05T19:34:56Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-05-05T19:34:56Z
dc.date.issued2020-05
dc.identifier.citationNelson, A. D.; Arbic, B. K.; Menemenlis, D.; Peltier, W. R.; Alford, M. H.; Grisouard, N.; Klymak, J. M. (2020). "Improved Internal Wave Spectral Continuum in a Regional Ocean Model." Journal of Geophysical Research: Oceans 125(5): n/a-n/a.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/154917
dc.description.abstractRecent work demonstrates that high‐resolution global models forced simultaneously by atmospheric fields and the astronomical tidal potential contain a partial internal (gravity) wave (IW) spectral continuum. Regional simulations of the MITgcm forced at the horizontal boundaries by a global run that carries a partial IW continuum spectrum are performed at the same grid spacing as the global run and at finer grid spacings in an attempt to fill out more of the IW spectral continuum. Decreasing only the horizontal grid spacing from 2 to 0.25 km greatly improves the frequency spectra and slightly improves the vertical wavenumber spectra of the horizontal velocity. Decreasing only the vertical grid spacing by a factor of 3 does not yield any significant improvements. Decreasing both horizontal and vertical grid spacings yields the greatest degree of improvement, filling the frequency spectrum out to 72 cpd. Our results suggest that improved IW spectra in regional models are possible if they are run at finer grid spacings and are forced at their lateral boundaries by remotely generated IWs. Additionally, consistency relations demonstrate that improvements in the spectra are indeed due to the existence of IWs at higher frequencies and vertical wavenumbers when remote IW forcing is included and model grid spacings decrease. By being able to simulate an IW spectral continuum to 0.25 km scales, these simulations demonstrate that one may be able to track the energy pathways of IWs from generation to dissipation and improve the understanding of processes such as IW‐driven mixing.Plain Language SummaryModels of internal waves (IWs) may help us to better understand the spatial geography of mixing in the ocean and are playing an increasingly important role in the planning of satellite missions. Following recent work showing that high‐resolution global models contain a partial IW spectrum, this paper describes further improvements in the spectrum seen in a high‐resolution regional model forced at the boundaries by a previously performed global IW simulation. Decreasing only the horizontal grid spacing greatly improves the frequency spectra and slightly improves the vertical wavenumber spectra of velocity. Increasing only the number of vertical levels does not yield any significant improvements. Decreasing both horizontal and vertical grid spacings yields the greatest improvement in both spectra. Our results suggest that regional models can exhibit improved IW spectra over global models if two conditions are met—they must have higher horizontal and vertical resolutions, and they must have remotely generated IWs at their boundaries. Application of the so‐called consistency relations demonstrates that the model is indeed carrying a field of high‐frequency IWs. Being able to simulate a fuller IW spectrum demonstrates that one may be able to use these models to improve the understanding of IW‐driven processes and energy pathways.Key PointsInternal gravity wave spectra in regional models are more realistic as model grid spacing decreasesThe vertical wavenumber spectra improve less dramatically than the frequency spectraInternal gravity wave consistency relations are applied to modeled spectra
dc.publisherWiley Periodicals, Inc.
dc.publisherGODAE OceanView
dc.subject.otherocean
dc.subject.otherinternal waves
dc.subject.otherinternal wave spectra
dc.subject.otherocean models
dc.subject.otherhigh‐resolution modeling
dc.subject.otherregional modeling
dc.titleImproved Internal Wave Spectral Continuum in a Regional Ocean Model
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154917/1/jgrc23947_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154917/2/jgrc23947.pdf
dc.identifier.doi10.1029/2019JC015974
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferencePolzin, K., Toole, J., & Schmitt, R. ( 1995 ). Finescale parameterizations of turbulent dissipation. Journal of Physical Oceanography, 25 ( 3 ), 306 – 328. https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2
dc.identifier.citedreferenceGarrett, C., & Munk, W. ( 1979 ). Internal waves in the ocean. Annual Review of Fluid Mechanics, 11 ( 1 ), 339 – 369. https://doi.org/10.1146/annurev.fl.11.010179.002011
dc.identifier.citedreferenceLarge, W., & Yeager, S. ( 2004 ). Diurnal to decadal global forcing for ocean and sea‐ice models: The data sets and flux climatologies.  https://doi.org/10.5065/D6KK98Q6
dc.identifier.citedreferenceLeaman, K., & Sanford, T. ( 1975 ). Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. Journal of Geophysical Research, 80 ( 15 ), 1975 – 1978. https://doi.org/10.1029/JC080i015p01975
dc.identifier.citedreferenceLevine, M. ( 2002 ). A modification of the Garrett‐Munk internal wave spectrum. Journal of Physical Oceanography, 32, 3166 – 3181. https://doi.org/10.1175/1520-0485(2002)032<3166:AMOTGM>2.0.CO;2
dc.identifier.citedreferenceLien, R.‐C., & Müller, P. ( 1992 ). Consistency relations for gravity and vortical modes in the ocean. Deep Sea Research Part A. Oceanographic Research Papers, 39 ( 9 ), 1595 – 1612. https://doi.org/10.1016/0198-0149(92)90050-4
dc.identifier.citedreferenceLomb, N. ( 1976 ). Least‐squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39 ( 2 ), 447 – 462. https://doi.org/10.1007/BF00648343
dc.identifier.citedreferenceLosch, M., Menemenlis, D., Campin, J.‐M., Heimbach, P., & Hill, C. ( 2010 ). On the formulation of sea‐ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modelling, 33 ( 1‐2 ), 129 – 144. https://doi.org/10.1016/j.ocemod.2009.12.008
dc.identifier.citedreferenceLuecke, C., Arbic, B., Bassette, S., Richman, J., Shriver, J., Alford, M., Smedstad, O., Timko, P., Trossman, D., & Wallcraft, A. ( 2017 ). The global mesoscale eddy available potential energy field in models and observations. Journal of Geophysical Research: Oceans, 122, 9126 – 9143. https://doi.org/10.1002/2017JC013136
dc.identifier.citedreferenceMacKinnon, J., St. Laurent, L., Garabato, N., & Alberto, C. ( 2013 ). Diapycnal mixing processes in the ocean interior. In G. Siedler et al. (Eds.), Ocean circulation and climate: A 21st century perspective (Vol.  103, pp. 159 – 183 ). Academic Press. https://doi.org/10.1016/B978-0-12-391851-2.00007-6
dc.identifier.citedreferenceMarshall, J., Hill, C., Perelman, L., & Adcroft, A. ( 1997 ). Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research, 102 ( C3 ), 5733 – 5752. https://doi.org/10.1029/96JC02776
dc.identifier.citedreferenceMazloff, M. R., Cornuelle, B., Gille, S. T., & Wang, J. ( 2020 ). The importance of remote forcing for regional modeling of internal waves. Journal of Geophysical Research: Oceans, 125, e2019JC015623. https://doi.org/10.1029/2019JC015623
dc.identifier.citedreferenceMcDougall, T., & Barker, P. ( 2011 ). Getting started with TEOS‐10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG, 127, 1 – 28.
dc.identifier.citedreferenceMorrison III, A., Toole, J. M., Lukas, R., Worrilow, S. E., & Doherty, K. W. ( 2001 ). Results from the first successful field deployment of the Mclane Moored Profiler. In MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), 2, pp. 949 – 955. https://doi.org/10.1109/OCEANS.2001.968243
dc.identifier.citedreferenceMüller, P., Olbers, D., & Willebrand, J. ( 1978 ). The IWEX spectrum. Journal of Geophysical Research, 83, 479 – 500. https://doi.org/10.1029/JC083iC01p00479
dc.identifier.citedreferenceMunk, W., & Wunsch, C. ( 1998 ). Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45 ( 12 ), 1977 – 2010. https://doi.org/10.1016/S0967-0637(98)00070-3
dc.identifier.citedreferenceNansen, F. ( 1897 ). Farthest North: The epic adventure of a visionary explorer. Skyhorse Publishing.
dc.identifier.citedreferenceMüller, P., & Siedler, G. ( 1976 ). Consistency relations for internal waves. In Deep sea research and oceanographic abstracts (Vol. 23, pp. 613 – 628 ). https://doi.org/10.1016/0011-7471(76)90004-8
dc.identifier.citedreferencePonce, M., van Zon, R., Northrup, S., Gruner, D., Chen, J., Ertinaz, F., Fedoseev, A., Groer, L., Mao, F., Mundim, B., Nolta, M., Pinto, J., Saldarriaga, M., Slavnic, V., Spence, E., Yu, C.‐H., & Richard Peltier, W. ( 2019 ). Deploying a top‐100 supercomputer for large parallel workloads: The Niagara Supercomputer. In Proceedings of the practice and experience in advanced research computing on rise of the machines (learning), pp. 34. https://doi.org/10.1145/3332186.3332195
dc.identifier.citedreferencePonte, R., Chaudhuri, A., & Vinogradov, S. ( 2015 ). Long‐period tides in an atmospherically driven, stratified ocean. Journal of Physical Oceanography, 45 ( 7 ), 1917 – 1928. https://doi.org/10.1175/JPO-D-15-0006.1
dc.identifier.citedreferenceQiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.‐L., & Menemenlis, D. ( 2018 ). Seasonality in transition scale from balanced to unbalanced motions in the World Ocean. Journal of Physical Oceanography, 48 ( 3 ), 591 – 605. https://doi.org/10.1175/JPO-D-17-0169.1
dc.identifier.citedreferenceRocha, C., Gille, S., Chereskin, T., & Menemenlis, D. ( 2016 ). Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophysical Research Letters, 43, 11,304 – 11,311. https://doi.org/10.1002/2016GL071349
dc.identifier.citedreferenceSavage, A., Arbic, B., Alford, M., Ansong, J., Farrar, J., Menemenlis, D., O’Rourke, A., Richman, J., Shriver, J., Voet, G., Wallcraft, A., & Zamudio, L. ( 2017 ). Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Geophysical Research: Oceans, 122, 7803 – 7821. https://doi.org/10.1002/2017JC013009
dc.identifier.citedreferenceScargle, J. ( 1982 ). Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 263, 835 – 853. https://doi.org/10.1086/160554
dc.identifier.citedreferenceShriver, J., Arbic, B., Richman, J., Ray, R., Metzger, E., Wallcraft, A., & Timko, P. ( 2012 ). An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model. Journal of Geophysical Research, 117, C10024. https://doi.org/10.1029/2012JC008170
dc.identifier.citedreferenceStewart, K., Hogg, A., Griffies, S., Heerdegen, A., Ward, M., Spence, P., & England, M. ( 2017 ). Vertical resolution of baroclinic modes in global ocean models. Ocean Modelling, 113, 50 – 65. https://doi.org/10.1016/j.ocemod.2017.03.012
dc.identifier.citedreferenceToole, J. ( 2001 ). McLane Moored Profiler data reduction and processing procedures, Woods Hole Oceanographic Institution. ftp://flotsam.whoi.edu/matfiles/MP_software/How_To/readme_MMP_proc.html
dc.identifier.citedreferenceWang, J., Fu, L.‐L., Qiu, B., Menemenlis, D., Farrar, J., Chao, Y., Thompson, A., & Flexas, M. ( 2018 ). An observing system simulation experiment for the calibration and validation of the Surface Water Ocean Topography sea surface height measurement using in situ platforms. Journal of Atmospheric and Oceanic Technology, 35 ( 2 ), 281 – 297. https://doi.org/10.1175/JTECH-D-17-0076.1
dc.identifier.citedreferenceYu, X., Ponte, A., Elipot, S., Menemenlis, D., Zaron, E., & Abernathey, R. ( 2019 ). Surface kinetic energy distributions in the global oceans from a high‐resolution numerical model and surface drifter observations. Geophysical Research Letters, 46, 9757 – 9766. https://doi.org/10.1029/2019GL083074
dc.identifier.citedreferenceZhao, Z., Alford, M., MacKinnon, J., & Pinkel, R. ( 2010 ). Long‐range propagation of the semidiurnal internal tide from the Hawaiian Ridge. Journal of Physical Oceanography, 40 ( 4 ), 713 – 736. https://doi.org/10.1175/2009JPO4207.1
dc.identifier.citedreferenceAlford, M. ( 2010 ). Sustained, full‐water‐column observations of internal waves and mixing near Mendocino Escarpment. Journal of Physical Oceanography, 40 ( 12 ), 2643 – 2660. https://doi.org/10.1175/2010JPO4502.1
dc.identifier.citedreferenceAlford, M., MacKinnon, J., Pinkel, R., & Klymak, J. ( 2017 ). Space‐time scales of shear in the North Pacific. Journal of Physical Oceanography, 47 ( 10 ), 2455 – 2478. https://doi.org/10.1175/JPO-D-17-0087.1
dc.identifier.citedreferenceAlford, M., MacKinnon, J., Zhao, Z., Pinkel, R., Klymak, J., & Peacock, T. ( 2007 ). Internal waves across the Pacific. Geophysical Research Letters, 34, L24601. https://doi.org/10.1029/2007GL031566
dc.identifier.citedreferenceAlford, M., & Whitmont, M. ( 2007 ). Seasonal and spatial variability of near‐inertial kinetic energy from historical moored velocity records. Journal of Physical Oceanography, 37 ( 8 ), 2022 – 2037. https://doi.org/10.1175/JPO3106.1
dc.identifier.citedreferenceMüller, M., Arbic, B., Richman, J., Shriver, J., Kunze, E., Scott, R., Wallcraft, A., & Zamudio, L. ( 2015 ). Toward an internal gravity wave spectrum in global ocean models. Geophysical Research Letters, 42, 3474 – 3481. https://doi.org/10.1002/2015GL063365
dc.identifier.citedreferenceArbic, B., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A., Menemenlis, D., Metzger, E. J., Muller, M., Nelson, A. D., Nelson, B. C., Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott, R. B., Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft, A. J., Zamudio, L., & Zhao, Z. ( 2018 ). A primer on global internal tide and internal gravity wave continuum modeling in HyCOM and MITgcm. In E. Chassignet et al. (Eds.), New frontiers in operational oceanography. GODAE OceanView. https://doi.org/10.17125/gov2018.ch13
dc.identifier.citedreferenceArbic, B., Wallcraft, A., & Metzger, E. ( 2010 ). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32 ( 3 ), 175 – 187. The magic of modelling: A special volume commemorating the contributions of Peter D. Killworth—Part 2, https://doi.org/10.1016/j.ocemod.2010.01.007,.
dc.identifier.citedreferenceBretthorst, G. ( 2003 ). Frequency estimation and generalized Lomb‐Scargle periodograms. In E. Feigelson & G. Babu (Eds.), Statistical challenges in astronomy (pp. 309 – 329 ). https://doi.org/10.1007/0-387-21529-8_21
dc.identifier.citedreferenceChassignet, E., Hurlburt, H., Metzger, E., Smedstad, O., Cummings, J., Halliwell, G., Bleck, R., Baraille, R., Wallcraft, A., Lozano, C., Tolman, H. L., Srinivasan, A., Hankin, S., Cornillon, P., Weisberg, R., Barth, A., He, R., Werner, F., & Wilkin, J. ( 2009 ). US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22 ( 2 ), 64 – 75. https://doi.org/10.5670/oceanog.2009.39
dc.identifier.citedreferenceFofonoff, N. ( 1969 ). Spectral characteristics of internal waves in ocean. Deep‐Sea Research, 59.
dc.identifier.citedreferenceFu, L.‐L., Alsdorf, D., Morrow, R., Rodrigues, E., & Mognard, N. ( 2012 ). SWOT: The Surface Water and Ocean Topography Mission—wide‐swath altimetric measurement of water elevation on Earth. JPL Publication, 12 ( 5 ). https://swot.jpl.nasa.gov/files/SWOT_MSD_final-3-26-12.pdf
dc.identifier.citedreferenceGarrett, C., & Munk, W. ( 1972 ). Space‐time scales of internal waves. Geophysical Fluid Dynamics, 3 ( 1 ), 225 – 264. https://doi.org/10.1080/03091927208236082
dc.identifier.citedreferenceGarrett, C., & Munk, W. ( 1975 ). Space–time scales of internal waves: A progress report. Journal of Geophysical Research, 80 ( 3 ), 291 – 297. https://doi.org/10.1029/JC080i003p00291
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.