Show simple item record

Statistical Analysis of Equatorial Plasma Irregularities Retrieved From Swarm 2013–2019 Observations

dc.contributor.authorAa, Ercha
dc.contributor.authorZou, Shasha
dc.contributor.authorLiu, Siqing
dc.date.accessioned2020-05-05T19:35:28Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:35:28Z
dc.date.issued2020-04
dc.identifier.citationAa, Ercha; Zou, Shasha; Liu, Siqing (2020). "Statistical Analysis of Equatorial Plasma Irregularities Retrieved From Swarm 2013–2019 Observations." Journal of Geophysical Research: Space Physics 125(4): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/154931
dc.description.abstractIn this study, we present a statistical analysis of equatorial plasma irregularities (EPIs) by using in situ plasma density measurements of the Swarm constellation from December 2013 to December 2019. The occurrence patterns for both postsunset and postmidnight EPIs with respect to longitude, season, local time, latitude, solar activity, and geomagnetic activity level are investigated. The main findings are as follows: (1) The postsunset/postmidnight EPIs occurrence rates exhibit different longitudinal and seasonal dependence: The postsunset EPIs have the maximum occurrence rate over the American‐Atlantic sectors during the December solstice and equinoxes, and the postmidnight EPIs have the maximum occurrence rate during the June solstice, especially over the African sector. (2) The postsunset EPIs occurrence rates have a positive correlation with solar activity, while the postmidnight EPIs are negatively correlated with it. (3) The latitudinal distribution of EPIs exhibits a double‐peak structure around ±5° magnetic latitude with a more significant peak in the summer hemisphere. (4) The EPIs occurrence rate increases with increasing geomagnetic activity level. (5) The main controlling factors for the distribution of postsunset EPIs are the magnetic declination angle, equatorial vertical E × B drift, and thermospheric zonal wind. For the postmidnight EPIs, the main controlling factors are likely to be atmospheric gravity waves and equatorward thermospheric meridional wind associated with midnight temperature maximum.Key PointsThe postsunset EPI occurrence rate is positively correlated with solar activity, while the postmidnight EPI is negatively correlated with itThe postsunset (postmidnight) EPIs are more prominent during the equinoxes (June solstice) over the American‐Atlantic (African) sectorThe latitudinal variation of EPIs exhibits an asymmetric double‐peak distribution pattern that prevails in the summer hemisphere
dc.publisherSpringer Netherlands
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstatistical study
dc.subject.otherSwarm insitu Ne
dc.subject.otherequatorial plasma irregularities
dc.titleStatistical Analysis of Equatorial Plasma Irregularities Retrieved From Swarm 2013–2019 Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154931/1/jgra55660_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154931/2/jgra55660.pdf
dc.identifier.doi10.1029/2019JA027022
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSmith, J., & Heelis, R. A. ( 2017 ). Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. Journal of Geophysical Research: Space Physics, 122, 5743 – 5755. https://doi.org/10.1002/2017JA024128
dc.identifier.citedreferenceStolle, C., Lühr, H., Rother, M., & Balasis, G. ( 2006 ). Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. Journal of Geophysical Research, 111, A02304. https://doi.org/10.1029/2005JA011184
dc.identifier.citedreferenceSu, S.‐Y., Chao, C. K., & Liu, C. H. ( 2008 ). On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the postsunset vertical drift velocities. Journal of Geophysical Research, 113, A05307. https://doi.org/10.1029/2007JA012809
dc.identifier.citedreferenceSu, S.‐Y., Liu, C. H., Ho, H. H., & Chao, C. K. ( 2006 ). Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions. Journal of Geophysical Research, 111, A06305. https://doi.org/10.1029/2005JA011330
dc.identifier.citedreferenceSultan, P. J. ( 1996 ). Linear theory and modeling of the Rayleigh‐Taylor instability leading to the occurrence of equatorial spread F. Journal of Geophysical Research, 101, 26,875 – 26,892. https://doi.org/10.1029/96JA00682
dc.identifier.citedreferenceTsunoda, R. T. ( 1980 ). Magnetic‐field‐aligned characteristics of plasma bubbles in the nighttime equatorial ionosphere. Journal Atmospheric Terrorist Physical, 42, 743 – 752. https://doi.org/10.1002/2017JA024128
dc.identifier.citedreferenceTsunoda, R. T. ( 1985 ). Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. Journal of Geophysical Research, 90, 447 – 456. https://doi.org/10.1029/JA090iA01p00447
dc.identifier.citedreferenceTsunoda, R. T., Livingston, R. C., McClure, J. P., & Hanson, W. B. ( 1982 ). Equatorial plasma bubbles—Vertically elongated wedges from the bottomside F layer. Journal of Geophysical Research, 87, 9171 – 9180. https://doi.org/10.1029/JA087iA11p09171
dc.identifier.citedreferenceWan, X., Xiong, C., Rodriguez‐Zuluaga, J., Kervalishvili, G. N., Stolle, C., & Wang, H. ( 2018 ). Climatology of the occurrence rate and amplitudes of local time distinguished equatorial plasma depletions observed by Swarm satellite. Journal of Geophysical Research: Space Physics, 123, 3014 – 3026. https://doi.org/10.1002/2017JA025072
dc.identifier.citedreferenceWoodman, R. F., & La Hoz, C. ( 1976 ). Radar observations of F region equatorial irregularities. Journal of Geophysical Research, 81 ( 31 ), 5447 – 5466. https://doi.org/10.1029/JA081i031p05447
dc.identifier.citedreferenceXiong, C., Lühr, H., Ma, S. Y., Stolle, C., & Fejer, B. G. ( 2012 ). Features of highly structured equatorial plasma irregularities deduced from CHAMP observations. Annales Geophysicae, 30, 1259 – 1269. https://doi.org/10.5194/angeo-30-1259-2012
dc.identifier.citedreferenceXiong, C., Park, J., Lühr, H., Stolle, C., & Ma, S. Y. ( 2010 ). Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Annales Geophysicae, 28, 1647 – 1658. https://doi.org/10.5194/698angeo-28-1647-2010
dc.identifier.citedreferenceXiong, C., Stolle, C., Lühr, H., Park, J., Fejer, B. G., & Kervalishvili, G. N. ( 2016 ). Scale analysis of equatorial plasma irregularities derived from Swarm constellation. Earth, Planets, and Space, 68, 121. https://doi.org/10.1186/s40623-016-0502-5
dc.identifier.citedreferenceXiong, C., Xu, J., Wu, K., & Yuan, W. ( 2018 ). Longitudinal thin structure of equatorial plasma depletions coincidently observed by swarm constellation and all‐sky imager. Journal of Geophysical Research: Space Physics, 123, 1593 – 1602. https://doi.org/10.1002/2017JA025091
dc.identifier.citedreferenceYizengaw, E., & Groves, K. M. ( 2018 ). Longitudinal and seasonal variability of equatorial ionospheric irregularities and electrodynamics. Space Weather, 16, 946 – 968. https://doi.org/10.1029/2018SW001980
dc.identifier.citedreferenceYizengaw, E., Moldwin, M. B., Zesta, E., Biouele, C. M., Damtie, B., Mebrahtu, A., Rabiu, B., Valladares, C. F., & Stoneback, R. ( 2014 ). The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors. Annales Geophysicae, 32, 231 – 238. https://doi.org/10.5194/angeo-32-231-2014
dc.identifier.citedreferenceYizengaw, E., Retterer, J., Pacheco, E. E., Roddy, P., Groves, K., Caton, R., & Baki, P. ( 2013 ). Postmidnight bubbles and scintillations in the quiet‐time June solstice. Geophysical Research Letters, 40, 5592 – 5597. https://doi.org/10.1002/2013GL058307
dc.identifier.citedreferenceYokoyama, T., & Fukao, S. ( 2006 ). Upwelling backscatter plumes in growth phase of equatorial spread F observed with the Equatorial Atmosphere Radar. Geophysical Research Letters, 33, L08104. https://doi.org/10.1029/2006GL025680
dc.identifier.citedreferenceYokoyama, T., Pfaff, R. F., Roddy, P. A., Yamamoto, M., & Otsuka, Y. ( 2011 ). On postmidnight low‐latitude ionospheric irregularities during solar minimum: 2. C/NOFS observations and comparisons with the Equatorial Atmosphere Radar. Journal of Geophysical Research, 116, A11326. https://doi.org/10.1029/2011JA016798
dc.identifier.citedreferenceYokoyama, T., Shinagawa, H., & Jin, H. ( 2014 ). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three‐dimensional high‐resolution bubble model. Journal of Geophysical Research: Space Physics, 119, 10,474 – 10,482. https://doi.org/10.1002/2014JA020708
dc.identifier.citedreferenceYu, T., Miyoshi, Y., Xia, C., Zuo, X., Yan, X., Yang, N., Sun, Y., Yue, X., & Mao, T. ( 2018 ). Solar dependence of equatorial F region irregularities observed by COSMIC radio occultations. Journal of Geophysical Research: Space Physics, 123, 9775 – 9787. https://doi.org/10.1029/2018JA025936
dc.identifier.citedreferenceZakharenkova, I., Astafyeva, E., & Cherniak, I. ( 2016 ). GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere. Earth, Planets, and Space, 68, 120. https://doi.org/10.1186/s40623-016-0490-5
dc.identifier.citedreferenceAa, E., Huang, W., Liu, S., Ridley, A., Zou, S., Shi, L., Chen, Y., Shen, H., Yuan, T., Li, J., & Wang, T. ( 2018 ). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather, 16, 321 – 331. https://doi.org/10.1002/2017SW001776
dc.identifier.citedreferenceAa, E., Zou, S., Eastes, R., Karan, D. K., Zhang, S.‐R., Erickson, P. J., & Coster, A. J. ( 2020 ). Coordinated ground‐based and space‐based observations of equatorial plasma bubbles. Journal of Geophysical Research: Space Physics, 125, e2019JA027569. https://doi.org/10.1029/2019JA027569
dc.identifier.citedreferenceAa, E., Zou, S., Ridley, A. J., Zhang, S.‐R., Coster, A. J., Erickson, P. J., Liu, S., & Ren, J. ( 2019 ). Merging of storm‐time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather, 17, 285 – 298. https://doi.org/10.1029/2018SW002101
dc.identifier.citedreferenceAbdu, M. A. ( 2001 ). Outstanding problems in the equatorial ionosphere‐thermosphere electrodynamics relevant to spread F. Journal of Atmospheric and Solar‐Terrestrial Physics, 63 ( 9 ), 869 – 884. https://doi.org/10.1016/S1364-6826(00)00201-7
dc.identifier.citedreferenceAbdu, M. A. ( 2019 ). Day‐to‐day and short‐term variabilities in the equatorial plasma bubble/spread F irregularity seeding and development. Progress in Earth and Planetary Science, 6, 11. https://doi.org/10.1186/s40645-019-0258-1
dc.identifier.citedreferenceAbdu, M. A., Batista, I. S., Carrasco, A. J., & Brum, C. G. ( 2005 ). South Atlantic magnetic anomaly ionization: A review and a new focus on electrodynamic effects in the equatorial ionosphere. Journal of Atmospheric and Solar‐Terrestrial Physics, 67 ( 17 ), 1643 – 1657. https://doi.org/10.1016/j.jastp.2005.01.014
dc.identifier.citedreferenceAbdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H., Medeiros, A. F., & Trivedi, N. B. ( 2003 ). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. Journal of Geophysical Research, 108 ( A12 ), 1449. https://doi.org/10.1029/2002JA009721
dc.identifier.citedreferenceAveiro, H. C., Hysell, D. L., Caton, R. G., Groves, K. M., Klenzing, J., Pfaff, R. F., Stoneback, R., & Heelis, R. A. ( 2012 ). Three‐dimensional numerical simulations of equatorial spread F: Results and observations in the Pacific sector. Journal of Geophysical Research, 117, A03325. https://doi.org/10.1029/2011JA017077
dc.identifier.citedreferenceBasu, S., & Basu, S. ( 1985 ). Equatorial scintillations: Advances since ISEA‐6. Journal of Atmospheric and Terrestrial Physics, 47 ( 8 ), 753 – 768. https://doi.org/10.1016/0021-9169(85)90052-2
dc.identifier.citedreferenceBasu, S., Basu, S., Groves, K. M., Yeh, H.‐C., Su, S.‐Y., Rich, F. J., Sultan, P. J., & Keskinen, M. J. ( 2001 ). Response of the equatorial ionosphere in the South Atlantic Region to the Great Magnetic Storm of July 15, 2000. Geophysical Research Letters, 28, 3577 – 3580. https://doi.org/10.1029/2001GL013259
dc.identifier.citedreferenceBhattacharyya, A., Basu, S., Groves, K. M., Valladares, C. E., & Sheehan, R. ( 2001 ). Dynamics of equatorial F region irregularities from spaced receiver scintillation observations. Geophysical Research Letters, 28, 119 – 122. https://doi.org/10.1029/2000GL01228
dc.identifier.citedreferenceBlanch, E., Altadill, D., Juan, J. M., Camps, A., Barbosa, J., González‐Casado, G., Riba, J., Sanz, J., Vazquez, G., & Orús‐Pérez, R. ( 2018 ). Improved characterization and modeling of equatorial plasma depletions. Journal of Space Weather and Space Climate, 8, A38. https://doi.org/10.1051/swsc/2018026
dc.identifier.citedreferenceBurke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., & Su, S. Y. ( 2004 ). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT‐1. Journal of Geophysical Research, 109, A12301. https://doi.org/10.1029/2004JA010583
dc.identifier.citedreferenceBurke, W., Huang, C., Gentile, L., & Bauer, L. ( 2004 ). Seasonal‐longitudinal variability of equatorial plasma bubbles. Annales Geophysicae, 22, 3089 – 3098. https://doi.org/10.5194/angeo-22-3089-2004
dc.identifier.citedreferenceCarter, B. A., Yizengaw, E., Pradipta, R., Retterer, J. M., Groves, K., Valladares, C., Caton, R., Bridgwood, C., Norman, R., & Zhang, K. ( 2016 ). Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm. Journal of Geophysical Research: Space Physics, 121, 894 – 905. https://doi.org/10.1002/2015JA022194
dc.identifier.citedreferenceCarter, B. A., Zhang, K., Norman, R., Kumar, V. V., & Kumar, S. ( 2013 ). On the occurrence of equatorial F‐region irregularities during solar minimum using radio occultation measurements. Journal of Geophysical Research: Space Physics, 118, 892 – 904. https://doi.org/10.1002/jgra.50089
dc.identifier.citedreferenceCherniak, I., & Zakharenkova, I. ( 2016 ). First observations of super plasma bubbles in Europe. Geophysical Research Letters, 43, 11,137 – 11,145. https://doi.org/10.1002/2016GL071421
dc.identifier.citedreferenceCherniak, I., Zakharenkova, I., & Sokolovsky, S. ( 2019 ). Multi‐instrumental observation of storm‐induced ionospheric plasma bubbles at equatorial and middle latitudes. Journal of Geophysical Research: Space Physics, 124, 1491 – 1508. https://doi.org/10.1029/2018JA026309
dc.identifier.citedreferenceComberiate, J., & Paxton, L. J. ( 2010 ). Coordinated UV imaging of equatorial plasma bubbles using TIMED/GUVI and DMSP/SSUSI. Space Weather, 8, S10002. https://doi.org/10.1029/2009SW000546
dc.identifier.citedreferenceDao, E., Kelley, M. C., Roddy, P., Retterer, J., Ballenthin, J. O., de La Beaujardiere, O., & Su, Y.‐J. ( 2011 ). Longitudinal and seasonal dependence of nighttime equatorial plasma density irregularities during solar minimum detected on the C/NOFS satellite. Geophysical Research Letters, 38, L10104. https://doi.org/10.1029/2011GL047046
dc.identifier.citedreferenceEccles, J. V., St. Maurice, J. P., & Schunk, R. W. ( 2015 ). Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low‐latitude ionosphere. Journal of Geophysical Research: Space Physics, 120, 4950 – 4970. https://doi.org/10.1002/2014JA020664
dc.identifier.citedreferenceFejer, B. G., Scherliess, L., & de Paula, E. R. ( 1999 ). Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. Journal of Geophysical Research, 104, 19,859 – 19,870. https://doi.org/10.1029/1999JA900271
dc.identifier.citedreferenceGentile, L. C., Burke, W. J., & Rich, F. J. ( 2006 ). A global climatology for equatorial plasma bubbles in the topside ionosphere. Annales Geophysicae, 24 ( 1 ), 163 – 172. https://doi.org/10.5194/angeo-24-163-2006
dc.identifier.citedreferenceHuang, C.‐S. ( 2016 ). Plasma drifts and polarization electric fields associated with TID‐like disturbances in the low‐latitude ionosphere: C/NOFS observations. Journal of Geophysical Research: Space Physics, 121, 1802 – 1812. https://doi.org/10.1002/2015JA022201
dc.identifier.citedreferenceHuang, C. Y., Burke, W. J., Machuzak, J. S., Gentile, L. C., & Sultan, P. J. ( 2001 ). DMSP observations of equatorial plasma bubbles in the topside ionosphere near solar maximum. Journal of Geophysical Research, 106, 8131 – 8142. https://doi.org/10.1029/2000JA000319
dc.identifier.citedreferenceHuang, C. Y., Burke, W. J., Machuzak, J. S., Gentile, L. C., & Sultan, P. J. ( 2002 ). Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: Toward a global climatology. Journal of Geophysical Research, 107 ( A12 ), 1434. https://doi.org/10.1029/2002JA009452
dc.identifier.citedreferenceHuang, C.‐S., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Ballenthin, J. O., & Hairston, M. R. ( 2012 ). Generation and characteristics of equatorial plasma bubbles detected by the C/NOFS satellite near the sunset terminator. Journal of Geophysical Research, 117, A11313. https://doi.org/10.1029/2012JA018163
dc.identifier.citedreferenceHuang, C.‐S., Foster, J. C., & Sahai, Y. ( 2007 ). Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause. Journal of Geophysical Research, 112, A05315. https://doi.org/10.1029/2007JA012307
dc.identifier.citedreferenceHuang, C.‐S., La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Liu, J. Y., & Chen, S. P. ( 2014 ). Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008‐2012). Journal of Geophysical Research: Space Physics, 119, 1186 – 1199. https://doi.org/10.1002/2013JA019212
dc.identifier.citedreferenceHuang, C.‐S., Rich, F. J., & Burke, W. J. ( 2010 ). Storm time electric fields in the equatorial ionosphere observed near the dusk meridian. Journal of Geophysical Research, 115, A08313. https://doi.org/10.1029/2009JA015150
dc.identifier.citedreferenceHuba, J. D., & Joyce, G. ( 2007 ). Equatorial spread F modeling: Multiple bifurcated structures, secondary instabilities, large density ‘bite‐outs,’ and supersonic flows. Geophysical Research Letters, 34, L07105. https://doi.org/10.1029/2006GL028519
dc.identifier.citedreferenceHuba, J. D., Joyce, G., & Krall, J. ( 2008 ). Three‐dimensional equatorial spread F modeling. Geophysical Research Letters, 35, L10102. https://doi.org/10.1029/2008GL033509
dc.identifier.citedreferenceHuba, J. D., & Krall, J. ( 2013 ). Impact of meridional winds on equatorial spread F: Revisited. Geophysical Research Letters, 40, 1268 – 1272. https://doi.org/10.1002/grl.50292
dc.identifier.citedreferenceJin, H., Zou, S., Chen, G., Yan, C., Zhang, S., & Yang, G. ( 2018 ). Formation and evolution of low‐latitude F region field‐aligned irregularities during the 7‐8 September 2017 storm: Hainan Coherent Scatter Phased Array Radar and Digisonde Observations. Space Weather, 16, 648 – 659. https://doi.org/10.1029/2018SW001865
dc.identifier.citedreferenceKatamzi‐Joseph, Z. T., Habarulema, J. B., & Hernández‐Pajares, M. ( 2017 ). Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001. Space Weather, 15, 1177 – 1190. https://doi.org/10.1002/2017SW001674
dc.identifier.citedreferenceKelley, M. C., Haerendel, G., Kappler, H., Valenzuela, A., Balsley, B. B., Carter, D. A., Ecklund, W. L., Carlson, C. W., Haeusler, B., & Torbert, R. ( 1976 ). Evidence for a Rayleigh‐Taylor type instability and upwelling of depleted density regions during equatorial spread F. Geophysical Research Letters, 3, 448 – 450. https://doi.org/10.1029/GL003i008p00448
dc.identifier.citedreferenceKelley, M. C., Makela, J. J., Paxton, L. J., Kamalabadi, F., Comberiate, J. M., & Kil, H. ( 2003 ). The first coordinated ground‐ and space‐based optical observations of equatorial plasma bubbles. Geophysical Research Letters, 30 ( 14 ), 1766. https://doi.org/10.1029/2003GL017301
dc.identifier.citedreferenceKil, H., & Heelis, R. A. ( 1998 ). Global distribution of density irregularities in the equatorial ionosphere. Journal of Geophysical Research, 103, 407 – 418. https://doi.org/10.1029/97JA02698
dc.identifier.citedreferenceKil, H., Heelis, R. A., Paxton, L. J., & Oh, S.‐J. ( 2009 ). Formation of a plasma depletion shell in the equatorial ionosphere. Journal of Geophysical Research, 114, A11302. https://doi.org/10.1029/2009JA014369
dc.identifier.citedreferenceKil, H., Paxton, L. J., & Oh, S.‐J. ( 2009 ). Global bubble distribution seen from ROCSAT‐1 and its association with the evening prereversal enhancement. Journal of Geophysical Research, 114, A06307. https://doi.org/10.1029/2008JA013672
dc.identifier.citedreferenceKrall, J., Huba, J. D., Ossakow, S. L., Joyce, G., Makela, J. J., Miller, E. S., & Kelley, M. C. ( 2011 ). Modeling of equatorial plasma bubbles triggered by non‐equatorial traveling ionospheric disturbances. Geophysical Research Letters, 38, L08103. https://doi.org/10.1029/2011GL046890
dc.identifier.citedreferenceKudeki, E., Akgiray, A., Milla, M., Chau, J. L., & Hysell, D. L. ( 2007 ). Equatorial spread‐F initiation: Post‐sunset vortex, thermospheric winds, gravity waves. Journal of Atmospheric and Solar‐Terrestrial Physics, 69 ( 17‐18 ), 2416 – 2427. https://doi.org/10.1016/j.jastp.2007.04.012
dc.identifier.citedreferenceLühr, H., Kervalishvili, G., Rauberg, J., & Stolle, C. ( 2016 ). Zonal currents in the F region deduced from Swarm constellation measurements. Journal of Geophysical Research: Space Physics, 121, 638 – 648. https://doi.org/10.1002/2015JA022051
dc.identifier.citedreferenceLühr, H., Xiong, C., Park, J., & Rauberg, J. ( 2014 ). Systematic study of intermediate‐scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations. Frontiers in Physics, 2, 15. https://doi.org/10.3389/fphy.2014.00015
dc.identifier.citedreferenceLi, G., Ning, B., Abdu, M. A., Otsuka, Y., Yokoyama, T., Yamamoto, M., & Liu, L. ( 2013 ). Longitudinal characteristics of spread F backscatter plumes observed with the EAR and Sanya VHF radar in Southeast Asia. Journal of Geophysical Research: Space Physic, 118, 6544 – 6557. https://doi.org/10.1002/jgra.50581
dc.identifier.citedreferenceLi, G., Ning, B., Abdu, M. A., Yue, X., Liu, L., Wan, W., & Hu, L. ( 2011 ). On the occurrence of postmidnight equatorial F region irregularities during the June solstice. Journal of Geophysical Research, 116, A04318. https://doi.org/10.1029/2010JA016056
dc.identifier.citedreferenceLi, G., Ning, B., Wang, C., Abdu, M. A., Otsuka, Y., Yamamoto, M., Wu, J., & Chen, J. ( 2018 ). Storm‐enhanced development of post‐sunset equatorial plasma bubbles around the meridian 120E/60W on 7‐8 September 2017. Journal of Geophysical Research: Space Physics, 123, 7985 – 7998. https://doi.org/10.1029/2018JA025871
dc.identifier.citedreferenceLiu, H., Doornbos, E., & Nakashima, J. ( 2016 ). Thermospheric wind observed by GOCE: Wind jets and seasonal variations. Journal of Geophysical Research: Space Physics, 121, 6901 – 6913. https://doi.org/10.1002/2016JA022938
dc.identifier.citedreferenceLiu, H., Pedatella, N., & Hocke, K. ( 2017 ). Medium‐scale gravity wave activity in the bottomside F region in tropical regions. Geophysical Research Letters, 44, 7099 – 7105. https://doi.org/10.1002/2017GL073855
dc.identifier.citedreferenceMa, G., & Maruyama, T. ( 2006 ). A super bubble detected by dense GPS network at east Asian longitudes. Geophysical Research Letters, 33, L21103. https://doi.org/10.1029/2006GL027512
dc.identifier.citedreferenceMakela, J. J., & Kelley, M. C. ( 2003 ). Field‐aligned 777.4‐nm composite airglow images of equatorial plasma depletions. Geophysical Research Letters, 30 ( 8 ), 1442. https://doi.org/10.1029/2003GL017106
dc.identifier.citedreferenceMakela, J. J., & Miller, E. S. ( 2011 ). Influences on the development of equatorial plasma bubbles: Insights from a long‐term optical dataset. In Aeronomy of the Earth’s Atmosphere and Ionosphere (pp. 239 – 249 ). Dordrecht: Springer Netherlands.
dc.identifier.citedreferenceMartinis, C., Baumgardner, J., Mendillo, M., Wroten, J., Coster, A., & Paxton, L. ( 2015 ). The night when the auroral and equatorial ionospheres converged. Journal of Geophysical Research: Space Physics, 120, 8085 – 8095. https://doi.org/10.1002/2015JA021555
dc.identifier.citedreferenceMaruyama, T. ( 1988 ). A diagnostic model for equatorial spread F. 1. Model description and application to electric field and neutral wind effects. Journal of Geophysical Research, 93 ( A12 ), 14,611 – 14,622.
dc.identifier.citedreferenceNicolls, M. J., Kelley, M. C., Vlasov, M. N., Sahai, Y., Chau, J. L., Hysell, D. L., Fagundes, P. R., Becker‐Guedes, F., & Lima, W. L. C. ( 2006 ). Observations and modeling of post‐midnight uplifts near the magnetic equator. Annales Geophysicae, 24, 1317 – 1331. https://doi.org/10.5194/angeo-24-1317-2006
dc.identifier.citedreferenceNishioka, M., Otsuka, Y., Shiokawa, K., Tsugawa, T., Effendy, N., Supnithi, P., Nagatsuma, T., & Murata, K. T. ( 2012 ). On post‐midnight field‐aligned irregularities observed with a 30.8‐MHz radar at a low latitude: Comparison with F‐layer altitude near the geomagnetic equator. Journal of Geophysical Research, 117, A08337. https://doi.org/10.1029/2012JA017692
dc.identifier.citedreferenceNishioka, M., Saito, A., & Tsugawa, T. ( 2008 ). Occurrence characteristics of plasma bubble derived from global ground‐based GPS receiver networks. Journal of Geophysical Research, 113, A05301. https://doi.org/10.1029/2007JA012605
dc.identifier.citedreferenceOtsuka, Y. ( 2018 ). Review of the generation mechanisms of post‐midnight irregularities in the equatorial and low‐latitude ionosphere. Progress in Earth and Planetary Science, 5, 57. https://doi.org/10.1186/s40645-018-0212-7
dc.identifier.citedreferenceOtt, E. ( 1978 ). Theory of Rayleigh‐Taylor bubbles in the equatorial ionosphere. Journal of Geophysical Research, 83, 2066 – 2070. https://doi.org/10.1029/JA083iA05p02066
dc.identifier.citedreferencePudovkin, M. I. ( 1974 ). Electric fields and currents in the ionosphere. Space Science Reviews, 16 ( 5‐6 ), 727 – 770. https://doi.org/10.1007/BF00182599
dc.identifier.citedreferenceRetterer, J. M., & Gentile, L. C. ( 2009 ). Modeling the climatology of equatorial plasma bubbles observed by DMSP. Radio Science, 44, RS0A31. https://doi.org/10.1029/2008RS004057
dc.identifier.citedreferenceRetterer, J. M., & Roddy, P. ( 2014 ). Faith in a seed: on the origins of equatorial plasma bubbles. Annal Geophysical, 32, 485 – 498. https://doi.org/10.5194/angeo-32-485-2014
dc.identifier.citedreferenceRodríguez‐Zuluaga, J., Stolle, C., & Park, J. ( 2017 ). On the direction of the Poynting flux associated with equatorial plasma depletions as derived from Swarm. Geophysical Research Letters, 44, 5884 – 5891. https://doi.org/10.1002/2017GL073385
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.