Show simple item record

3Rs‐friendly approach to exogenous metabolic activation that supports high‐throughput genetic toxicology testing

dc.contributor.authorTian, Shuchang
dc.contributor.authorCyr, Aiyana
dc.contributor.authorZeise, Karen
dc.contributor.authorBryce, Steven M.
dc.contributor.authorHall, Nikki
dc.contributor.authorBemis, Jeffrey C.
dc.contributor.authorDertinger, Stephen D.
dc.date.accessioned2020-05-05T19:36:00Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:36:00Z
dc.date.issued2020-04
dc.identifier.citationTian, Shuchang; Cyr, Aiyana; Zeise, Karen; Bryce, Steven M.; Hall, Nikki; Bemis, Jeffrey C.; Dertinger, Stephen D. (2020). "3Rs‐friendly approach to exogenous metabolic activation that supports high‐throughput genetic toxicology testing." Environmental and Molecular Mutagenesis 61(4): 408-432.
dc.identifier.issn0893-6692
dc.identifier.issn1098-2280
dc.identifier.urihttps://hdl.handle.net/2027.42/154945
dc.description.abstractMultiFlow® DNA Damage—p53, γH2AX, Phospho‐Histone H3 is a miniaturized, flow cytometry‐based assay that provides genotoxic mode of action information by distinguishing clastogens, aneugens, and nongenotoxicants. Work to date has focused on the p53‐competent human cell line TK6. While mammalian cell genotoxicity assays typically supply exogenous metabolic activation in the form of concentrated rat liver S9, this is a less‐than‐ideal approach for several reasons, including 3Rs considerations. Here, we describe our experiences with low concentration S9 and saturating co‐factors which were allowed to remain in contact with cells and test chemicals for 24 continuous hours. We exposed TK6 cells in 96‐well plates to each of 15 reference chemicals over a range of concentrations, both in the presence and absence of 0.25% v/v phenobarbital/β‐naphthoflavone‐induced rat liver S9. After 4 and 24 hr of treatment cell aliquots were added to wells of a microtiter plate containing the working detergent/stain/antibody cocktail. After a brief incubation robotic sampling was employed for walk‐away flow cytometric data acquisition. PROAST benchmark dose (BMD) modeling was used to characterize the resulting dose–response curves. For each of the 8 reference pro‐genotoxicants studied, relative nuclei count, γH2AX, and/or p53 biomarker BMD values were order(s) of magnitude lower for 0.25% S9 conditions compared to 0% S9. Conversely, several of the direct‐acting reference chemicals exhibited appreciably lower cytotoxicity and/or genotoxicity BMD values in the presence of S9 (eg, resorcinol). These results prove the efficacy of the low concentration S9 system, and indicate that an efficient and highly scalable multiplexed assay can effectively identify chemicals that require bioactivation to exert their genotoxic effects.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherflow cytometry
dc.subject.otherp53
dc.subject.otherDNA damage
dc.subject.otherγH2AX
dc.subject.othermetabolic activation
dc.title3Rs‐friendly approach to exogenous metabolic activation that supports high‐throughput genetic toxicology testing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154945/1/em22361_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154945/2/em22361.pdf
dc.identifier.doi10.1002/em.22361
dc.identifier.sourceEnvironmental and Molecular Mutagenesis
dc.identifier.citedreferenceOtteneder, M. and Lutz, W.K. ( 1999 ) Correlation of DNA adduct level with tumor incidence: Carcinogenic potency of DNA adducts. Mutation Research, 424, 237 – 247.
dc.identifier.citedreferenceBryce, S.M., Bernacki, D.T., Smith‐Roe, S.L., Witt, K.L., Bemis, J.C. and Dertinger, S.D. ( 2018 ) Investigating the generalizability of the MultiFlow® DNA damage assay and several companion machine learning models with a set of 103 diverse test chemicals. Toxicological Sciences, 162, 146 – 166.
dc.identifier.citedreferenceCarriére, V., de Waziers, I., Courtois, Y.A., Leroux, J.P. and Beaune, P.H. ( 1992 ) Cytochrome P450 induction and mutagenicity of 2‐aminoanthracene (2AA) in rat liver and gut. Mutation Research, 268, 11 – 20.
dc.identifier.citedreferenceCheung, J.R., Dickinson, D.A., Moss, J., Schuler, M.J., Spellman, R.A. and Heard, P.L. ( 2015 ) Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay. Mutation Research, 777, 7 – 16.
dc.identifier.citedreferenceDertinger, S.D., Kraynak, A.R., Wheeldon, R.P., Bernacki, D.T., Bryce, S.M., Hall, N., Bemis, J.C., Galloway, S.M., Escobar, P.A. and Johnson, G.E. ( 2019 ) Predictions of genotoxic potential, mode of action, molecular targets, and potency via a tiered MultiFlow® assay data analysis strategy. Environmental and Molecular Mutagenesis, 60, 513 – 533.
dc.identifier.citedreferencede Graaf, A.O., van den Heuvel, L.P., Dijkman, H.B., de Abreu, R.A., Birkenkamp, K.U., de White, T., van der Reijden, B.A., Smeitink, J.A. and Jansen, J.H. ( 2004 ) Bcl‐2 prevents loss of mitochondria in CCCP‐induced apoptosis. Experimental Cell Research, 299, 533 – 540.
dc.identifier.citedreferenceEuropean Food Safety Authority. ( 2010 ) Scientific opinion on the use of resorcinol as a food additive. EFSA Journal, 8 ( 1 ), 1411.
dc.identifier.citedreferenceFutami, T., Miyagishi, M. and Taira, K. ( 2005 ) Identification of a network involved in thapsigargin‐induced apoptosis using a library of small interfering RNA expression vectors. Journal of Biological Chemistry, 280, 826 – 831.
dc.identifier.citedreferenceGarcia‐Canton, C., Anadon, A. and Meredith, C. ( 2013 ) Assessment of the in vitro γH2AX assay by high content screening as a novel genotoxicity test. Mutation Research, 757, 158 – 166.
dc.identifier.citedreferenceGe, J., Chow, D.N., Fessler, J.L., Weingeist, D.M., Wood, D.K. and Engelward, B.P. ( 2015 ) Micropatterned comet assay enables high throughput and sensitive DNA damage quantification. Mutagenesis, 30, 11 – 19.
dc.identifier.citedreferenceHastwell, P.W., Chai, L., Roberts, K.J., Webster, T.W., Harvey, J.S., Rees, R.W. and Walmsley, R.W. ( 2006 ) High‐specificity and high‐sensitivity genotoxicity assessment in a human cell line: Validation of the GreenScreen HC GADD45a‐GFP genotoxicity screening assay. Mutation Research, 607, 160 – 175.
dc.identifier.citedreferenceHendriks, G., Atallah, M., Morolli, B., Calléja, F., Ras‐Verloop, N., Huijskens, I., Raamsman, M., van de Water, B. and Vrieling, H. ( 2012 ) The ToxTracker assay: Novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals. Toxicological Sciences, 125, 285 – 298.
dc.identifier.citedreferenceHsieh, J.H., Smith‐Roe, S.L., Huang, R., Sedykh, A., Shockley, K.R., Aurerbach, S.S., Merrick, B.A., Xia, M., Tice, R.R. and Witt, K.L. ( 2019 ) Identifying compounds with genotoxicity potential using Tox21 high‐throughput screening assays. Chemical Research in Toxicology, 32, 1384 – 1401.
dc.identifier.citedreferenceKhoury, L., Zalko, D. and Audebert, M. ( 2016 ) Complementarity of phosphorylated histones H2AX and H3 quantification in different cell lines for genotoxicity screening. Archives of Toxicology, 90, 1983 – 1995.
dc.identifier.citedreferenceKirkland, D., Kasper, P., Martus, H.‐J., Müller, L., van Benthem, J., Madia, F. and Corvi, R. ( 2016 ) Updated recommended lists of genotoxic and non‐genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. Mutation Research, 795, 7 – 30.
dc.identifier.citedreferenceKrais, A.M., Speksnijder, E.N., Melis, J.P.M., Singh, R., Caldwell, A., de Costa, C.G., Luijten, M., Phillips, D.H. and Arlt, V.M. ( 2016 ) Metabolic activation of 2‐amino‐1‐methyl‐6‐phenylimidazo [4,5‐ b ]pyridine and DNA adduct formation depends on p53: Studies in Trp53(+/+), Trpp53(+/−) and Trp53(−/−) mice. Molecular Cancer Biology, 138, 976 – 982.
dc.identifier.citedreferenceLe Hégarat, L., Mourot, A., Huet, S., Vasseur, L., Camus, S., Chesné, C. and Fessard, V. ( 2014 ) Performance of comet and micronucleus assays in metabolically competent HepaRG cells to predict in vivo genotoxicity. Toxicological Sciences, 138, 300 – 309.
dc.identifier.citedreferenceLi, H.H., Hyduke, D.R., Chen, R., Heard, P., Yauk, C.L., Aubrecht, J. and Fornace, A.J., Jr. ( 2015 ) Development of a toxicogenomics signature for genotoxicity using a dose‐optimization and informatics strategy in human cells. Environmental and Molecular Mutagenesis, 56, 505 – 519.
dc.identifier.citedreferenceLi, H.H., Chen, R., Hyduke, D.R., Williams, A., Frötschl, R., Ellinger‐Ziegelbauer, H., O’Lone, R., Yauk, C.L., Aubrecht, J. and Forance, A.J., Jr. ( 2017 ) Development and validation of a high‐throughput transcriptomic biomarker to address 21 st century genetic toxicology needs. PNAS, 114, E10881 – E10889.
dc.identifier.citedreferenceMoon, J.L., Kim, S.Y., Shin, S.W. and Park, J.‐W. ( 2012 ) Regulation of brefeldin A‐induced ER stress and apoptosis by mitochondrial NADP+ −dependent isocitrate dehydrogenase. Biochemical and Biophysical Research Communications, 417, 760 – 764.
dc.identifier.citedreferenceNikolova, T., Dvorak, M., Jung, F., Adam, I., Krämer, E., Gerhold‐Ay, A. and Kaina, B. ( 2014 ) γH2AX assay for genotoxic and nongenotoxic agents: Comparison of H2AX phosphorylation with cell death response. Toxicological Sciences, 140, 103 – 117.
dc.identifier.citedreferenceRodriguez‐Antona, C. and Ingelman‐Sundberg, M. ( 2006 ) Cytochrome P450 pharmacogenetics and cancer. Oncogene, 25, 1679 – 1691.
dc.identifier.citedreferenceRussell, W.M.S. and Burch, R.L. ( 1959 ) The Principles of Humane Experimental Technique. London: Methuen and Co..
dc.identifier.citedreferenceSmart, D.J., Ahmedi, K.P., Harvey, J.S. and Lynch, A.M. ( 2011 ) Genotoxicity screening via the γH2AX by flow assay. Mutation Research, 715, 25 – 31.
dc.identifier.citedreferenceTsamou, M., Jennen, D.G., Claessen, S.M., Magkoufopoulou, C., Kleinjans, J.C. and van Delft, J.H. ( 2012 ) Performance of in vitro γH2AX assay in HepG2 cells to predict in vivo genotoxicity. Mutagenesis, 27, 645 – 652.
dc.identifier.citedreferenceWesterink, W.M. and Schoonen, W.G. ( 2007 ) Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicology in Vitro, 21, 1581 – 1591.
dc.identifier.citedreferenceWills, J.W., Johnson, G.E., Doak, S.H., Soeteman‐Hernández, L.G., Slob, W. and White, P.A. ( 2015 ) Empirical analysis of BMD metrics in genetic toxicology part I: in vitro analyses to provide robust potency rankings and support MOA determinations. Mutagenesis, 31, 255 – 263.
dc.identifier.citedreferenceYamazaki, H., Oda, Y., Funae, Y., Imaoka, S., Inui, Y., Guengerich, F.P. and Shimada, T. ( 1992 ) Participation of rat liver cytochrome P450 2E1 in the activation of n‐nitrosodimethylamine and n‐nitrosodiethylamine to products genotoxic in an acetyltransferase‐overexpressing Salmonella typhimurium strain (NM2009). Carcinogenesis, 13, 979 – 985.
dc.identifier.citedreferenceYoungblom, J.H., Wiencke, J.K. and Wolff, S. ( 1989 ) Inhibition of the adaptive response of human lymphocytes to very low doses of ionizing radiation by the protein synthesis inhibitor cycloheximide. Mutation Research, 227, 257 – 261.
dc.identifier.citedreferenceAmes, B.N., Durston, W.E., Yamasaki, E. and Lee, F.D. ( 1973 ) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. PNAS, 70, 2281 – 2285.
dc.identifier.citedreferenceArif, J.M. and Gupta, R.C. ( 1997 ) Microsome‐mediated bioactivation of dibenzo[a,l]pyrene and identification of DNA adducts by 32P‐postlabeling. Carcinogenesis, 18, 1999 – 2007.
dc.identifier.citedreferenceAudebert, M., Riu, A., Jacques, C., Hillenweck, A., Jamin, E.L., Zalko, D. and Cravedi, J.P. ( 2010 ) Use of the γH2AX assay for assessing the genotoxicity of polycyclic aromatic hydrocarbons in human cell lines. Toxicology Letters, 199, 182 – 192.
dc.identifier.citedreferenceBernacki, D.T., Bryce, S.M., Bemis, J.C., Kirkland, D. and Dertinger, S.D. ( 2016 ) γH2AX and p53 in TK6 cells discriminate promutagens and nongenotoxicants in the presence of rat liver S9. Environmental and Molecular Mutagenesis, 57, 546 – 558.
dc.identifier.citedreferenceBryce, S.M., Avlasevich, S.L., Bemis, J.C., Phonethepswath, S. and Dertinger, S.D. ( 2010 ) Miniaturized flow cytometric in vitro micronucleus assay represents an efficient tool for comprehensively characterizing genotoxicity dose‐response relationship. Mutation Research, 703, 191 – 199.
dc.identifier.citedreferenceBryce, S.M., Bemis, J.C., Mereness, J.A., Spellman, R.A., Moss, J., Dickinson, D., Schuler, M.J. and Dertinger, S.D. ( 2014 ) Interpreting in vitro micronucleus positive results: Simple biomarker matrix discriminates clastogens, aneugens, and misleading positive agents. Environmental and Molecular Mutagenesis, 55, 542 – 555.
dc.identifier.citedreferenceBryce, S.M., Bernacki, D.T., Bemis, J.C. and Dertinger, S.D. ( 2016 ) Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach. Environmental and Molecular Mutagenesis, 57, 171 – 189.
dc.identifier.citedreferenceBryce, S.M., Bernacki, D.T., Bemis, J.C., Spellman, R.A., Engel, M.E., Schuler, M., Lorge, E., Heikkinen, P.T., Hemmann, U., Thybaud, V., Wilde, S., Queisser, N., Sutter, A., Zeller, A., Guérard, M., Kirkland, D. and Dertinger, S.D. ( 2017 ) Interlaboratory evaluation of a multiplexed high information content in vitro genotoxicity assay. Environmental and Molecular Mutagenesis, 58, 146 – 161.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.