Show simple item record

Intranasal nanoemulsion vaccine confers long‐lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy

dc.contributor.authorO’Konek, Jessica J.
dc.contributor.authorLanders, Jeffrey J.
dc.contributor.authorJanczak, Katarzyna W.
dc.contributor.authorLindsey, Hayley K.
dc.contributor.authorMondrusov, Anna M.
dc.contributor.authorTotten, Tiffanie D.
dc.contributor.authorBaker, James R.
dc.date.accessioned2020-05-05T19:36:29Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:36:29Z
dc.date.issued2020-04
dc.identifier.citationO’Konek, Jessica J.; Landers, Jeffrey J.; Janczak, Katarzyna W.; Lindsey, Hayley K.; Mondrusov, Anna M.; Totten, Tiffanie D.; Baker, James R. (2020). "Intranasal nanoemulsion vaccine confers long‐lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy." Allergy 75(4): 872-881.
dc.identifier.issn0105-4538
dc.identifier.issn1398-9995
dc.identifier.urihttps://hdl.handle.net/2027.42/154959
dc.description.abstractBackgroundImmunotherapy for food allergy requires prolonged treatment protocols and, in most cases, does not lead to durable modulation of the allergic immune response. We have demonstrated an intranasal (IN) nanoemulsion adjuvant that redirects allergen‐specific Th2 responses toward Th1 and Th17 immunity, and protects from allergen challenge after only 2‐4 monthly administrations. Here, we investigate the ability of this technology to provide long‐term modulation of allergy in a murine model of cow’s milk allergy.MethodsSix weeks after sensitization to bovine casein, mice received four, monthly IN immunizations with nanoemulsion formulated with casein. Protection from casein challenge was assessed at 4 and 16 weeks after the final vaccine administration.ResultsThe NE vaccine significantly blunted the physiological responses to allergen challenge, and this effect persisted for at least 16 weeks. The protection from challenge was associated with the suppression of casein‐specific Th2 immunity and induced Th1 and Th17 cytokines as well as induction of IL‐10. Of interest, while immunized animals showed significantly decreased Th2 cytokine responses, cow’s milk‐specific IgE remained elevated in the serum at levels associated with reactivity in control sensitized animals. Protection was associated with suppressed mast cell activation and markedly reduced mast cell infiltration into the small intestine.ConclusionThe sustained unresponsiveness of at least 16 weeks after vaccination suggests that the nanoemulsion vaccine alters the allergic phenotype in a persistent manner different from traditional desensitization, and this leads to long‐term suppressive effects on allergic disease without eliminating serum IgE.This study evaluates the ability of an intranasal nanoemulsion‐based vaccine to induce long‐term modulation of allergic reactions in a mouse model of cow’s milk allergy. Intranasal immunization with nanoemulsion adjuvant suppresses Th2 responses and anaphylaxis. The sustained unresponsiveness of at least 16 weeks after vaccination suggests that the nanoemulsion vaccine alters the allergic phenotype.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherallergy treatment
dc.subject.otherimmunotherapy and tolerance induction
dc.subject.otherimmunotherapy vaccines and mechanisms
dc.subject.othervaccines
dc.subject.otherfood allergy
dc.titleIntranasal nanoemulsion vaccine confers long‐lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154959/1/all14064_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154959/2/all14064.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154959/3/all14064-sup-0003-FigS3.pdf
dc.identifier.doi10.1111/all.14064
dc.identifier.sourceAllergy
dc.identifier.citedreferenceVonk MM, Wagenaar L, Pieters R, et al. The efficacy of oral and subcutaneous antigen‐specific immunotherapy in murine cow’s milk‐ and peanut allergy models. Clin Transl Allergy. 2017; 7: 35.
dc.identifier.citedreferenceFriend DS, Ghildyal N, Austen KF, Gurish MF, Matsumoto R, Stevens RL. Mast cells that reside at different locations in the jejunum of mice infected with Trichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype. J Cell Biol. 1996; 135 ( 1 ): 279 ‐ 290.
dc.identifier.citedreferenceBrandt EB, Strait RT, Hershko D, et al. Mast cells are required for experimental oral allergen‐induced diarrhea. J Clin Invest. 2003; 112 ( 11 ): 1666 ‐ 1677.
dc.identifier.citedreferenceChen CY, Lee JB, Liu B, et al. Induction of interleukin‐9‐producing mucosal mast cells promotes susceptibility to IgE‐mediated experimental food allergy. Immunity. 2015; 43 ( 4 ): 788 ‐ 802.
dc.identifier.citedreferenceSindher SB, Long A, Acharya S, Sampath V, Nadeau KC. The use of biomarkers to predict aero‐allergen and food immunotherapy responses. Clin Rev Allergy Immunol. 2018; 55 ( 2 ): 190 ‐ 204.
dc.identifier.citedreferenceGupta RS, Walkner MM, Greenhawt M, et al. Food allergy sensitization and presentation in siblings of food allergic children. J Allergy Clin Immunol Pract. 2016; 4 ( 5 ): 956 ‐ 962.
dc.identifier.citedreferenceFlicker S, Valenta R. Renaissance of the blocking antibody concept in type I allergy. Int Arch Allergy Immunol. 2003; 132 ( 1 ): 13 ‐ 24.
dc.identifier.citedreferenceStrait RT, Morris SC, Finkelman FD. IgG‐blocking antibodies inhibit IgE‐mediated anaphylaxis in vivo through both antigen interception and Fc gamma RIIb cross‐linking. J Clin Invest. 2006; 116 ( 3 ): 833 ‐ 841.
dc.identifier.citedreferenceDaeron M, Malbec O, Latour S, Arock M, Fridman WH. Regulation of high‐affinity IgE receptor‐mediated mast cell activation by murine low‐affinity IgG receptors. J Clin Invest. 1995; 95 ( 2 ): 577 ‐ 585.
dc.identifier.citedreferenceRavetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol. 2001; 19: 275 ‐ 290.
dc.identifier.citedreferenceMondoulet L, Dioszeghy V, Vanoirbeek JA, Nemery B, Dupont C, Benhamou PH. Epicutaneous immunotherapy using a new epicutaneous delivery system in mice sensitized to peanuts. Int Arch Allergy Immunol. 2011; 154 ( 4 ): 299 ‐ 309.
dc.identifier.citedreferenceMondoulet L, Dioszeghy V, Ligouis M, Dhelft V, Dupont C, Benhamou PH. Epicutaneous immunotherapy on intact skin using a new delivery system in a murine model of allergy. Clin Exp Allergy. 2010; 40 ( 4 ): 659 ‐ 667.
dc.identifier.citedreferenceTordesillas L, Mondoulet L, Blazquez AB, Benhamou PH, Sampson HA, Berin MC. Epicutaneous immunotherapy induces gastrointestinal LAP(+) regulatory T cells and prevents food‐induced anaphylaxis. J Allergy Clin Immunol. 2017; 139 ( 1 ): 189 ‐ 201.
dc.identifier.citedreferenceKulis M, Macqueen I, Li Y, Guo R, Zhong XP, Burks AW. Pepsinized cashew proteins are hypoallergenic and immunogenic and provide effective immunotherapy in mice with cashew allergy. J Allergy Clin Immunol. 2012; 130 ( 3 ): 716 ‐ 723.
dc.identifier.citedreferenceYang M, Yang C, Mine Y. Multiple T cell epitope peptides suppress allergic responses in an egg allergy mouse model by the elicitation of forkhead box transcription factor 3‐ and transforming growth factor‐beta‐associated mechanisms. Clin Exp Allergy. 2010; 40 ( 4 ): 668 ‐ 678.
dc.identifier.citedreferenceRupa P, Mine Y. Oral immunotherapy with immunodominant T‐cell epitope peptides alleviates allergic reactions in a Balb/c mouse model of egg allergy. Allergy. 2012; 67 ( 1 ): 74 ‐ 82.
dc.identifier.citedreferenceWai CY, Leung NY, Leung PS, Chu KH. T cell epitope immunotherapy ameliorates allergic responses in a murine model of shrimp allergy. Clin Exp Allergy. 2016; 46 ( 3 ): 491 ‐ 503.
dc.identifier.citedreferenceSmaldini PL, Trejo F, Cohen JL, Piaggio E, Docena GH. Systemic IL‐2/anti‐IL‐2Ab complex combined with sublingual immunotherapy suppresses experimental food allergy in mice through induction of mucosal regulatory T cells. Allergy. 2018; 73 ( 4 ): 885 ‐ 895.
dc.identifier.citedreferenceZhu FG, Kandimalla ER, Yu D, Agrawal S. Oral administration of a synthetic agonist of Toll‐like receptor 9 potently modulates peanut‐induced allergy in mice. J Allergy Clin Immunol. 2007; 120 ( 3 ): 631 ‐ 637.
dc.identifier.citedreferenceLeonard SA, Martos G, Wang W, Nowak‐Wegrzyn A, Berin MC. Oral immunotherapy induces local protective mechanisms in the gastrointestinal mucosa. J Allergy Clin Immunol. 2012; 129 ( 6 ): 1579 ‐ 1587.
dc.identifier.citedreferenceVickery BP, Scurlock AM, Kulis M, et al. Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy. J Allergy Clin Immunol. 2014; 133 ( 2 ): 468 ‐ 475.
dc.identifier.citedreferenceBurks AW, Jones SM, Wood RA, et al. Oral immunotherapy for treatment of egg allergy in children. N Engl J Med. 2012; 367 ( 3 ): 233 ‐ 243.
dc.identifier.citedreferenceAkdis CA, Akdis M. Advances in allergen immunotherapy: aiming for complete tolerance to allergens. Sci Transl Med. 2015; 7 ( 280 ): 280ps6 ‐ 280ps6.
dc.identifier.citedreferencePalomares O, Akdis M, Martin‐Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev. 2017; 278 ( 1 ): 219 ‐ 236.
dc.identifier.citedreferenceSchulten V, Tripple V, Sidney J, et al. Association between specific timothy grass antigens and changes in TH1- and TH2-cell responses following specific immunotherapy. J Allergy Clin Immunol. 2014; 134 ( 5 ): 1076 ‐ 1083.
dc.identifier.citedreferenceSchulten V, Tripple V, Aasbjerg K, et al. Distinct modulation of allergic T cell responses by subcutaneous vs. sublingual allergen-specific immunotherapy. Clin Exp Allergy. 2016; 46 ( 3 ): 439 ‐ 448.
dc.identifier.citedreferenceSicherer SH, Sampson HA. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014; 133 ( 2 ): 291 ‐ 307.
dc.identifier.citedreferenceGupta RS, Springston EE, Warrier MR, et al. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics. 2011; 128 ( 1 ). https://doi.org/10.1542/peds.2011-0204
dc.identifier.citedreferencePanel NI‐SE, Boyce JA, Assa’ad A, et al. Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID‐sponsored expert panel. J Allergy Clin Immunol. 2010; 126 ( 6 Suppl ): S1 ‐ S58.
dc.identifier.citedreferenceSaarinen KM, Pelkonen AS, Makela MJ, Savilahti E. Clinical course and prognosis of cow’s milk allergy are dependent on milk‐specific IgE status. J Allergy Clin Immunol. 2005; 116 ( 4 ): 869 ‐ 875.
dc.identifier.citedreferenceHost A, Halken S, Jacobsen HP, Christensen AE, Herskind AM, Plesner K. Clinical course of cow’s milk protein allergy/intolerance and atopic diseases in childhood. Pediatr Allergy Immunol. 2002; 13 ( Suppl 15 ): 23 ‐ 28.
dc.identifier.citedreferenceFeuille E, Nowak‐Wegrzyn A. Allergen‐specific immunotherapies for food allergy. Allergy Asthma Immunol Res. 2018; 10 ( 3 ): 189 ‐ 206.
dc.identifier.citedreferenceLanser BJ, Leung D. The current state of epicutaneous immunotherapy for food allergy: a comprehensive review. Clin Rev Allergy Immunol. 2018; 55 ( 2 ): 153 ‐ 161.
dc.identifier.citedreferenceWood RA. Food allergen immunotherapy: current status and prospects for the future. J Allergy Clin Immunol. 2016; 137 ( 4 ): 973 ‐ 982.
dc.identifier.citedreferenceBird JA, Spergel JM, Jones SM, et al. Efficacy and safety of AR101 in oral immunotherapy for peanut allergy: results of ARC001, a randomized, double‐blind, placebo‐controlled phase 2 clinical trial. J Allergy Clin Immunol Pract. 2018; 6 ( 2 ): 476 ‐ 485.
dc.identifier.citedreferenceInvestigators PGoC, Vickery BP, Vereda A, et al. AR101 oral immunotherapy for peanut allergy. N Engl J Med. 2018; 379 ( 21 ): 1991 ‐ 2001.
dc.identifier.citedreferenceTaniuchi S, Takahashi M, Soejima K, Hatano Y, Minami H. Immunotherapy for cow’s milk allergy. Hum Vaccin Immunother. 2017; 13 ( 10 ): 2443 ‐ 2451.
dc.identifier.citedreferenceWood RA, Kim JS, Lindblad R, et al. A randomized, double‐blind, placebo‐controlled study of omalizumab combined with oral immunotherapy for the treatment of cow’s milk allergy. J Allergy Clin Immunol. 2016; 137 ( 4 ): 1103 ‐ 1110.
dc.identifier.citedreferenceTakahashi M, Taniuchi S, Soejima K, Hatano Y, Yamanouchi S, Kaneko K. Two‐weeks‐sustained unresponsiveness by oral immunotherapy using microwave heated cow’s milk for children with cow’s milk allergy. Allergy Asthma Clin Immunol. 2016; 12 ( 1 ): 44.
dc.identifier.citedreferenceYanagida N, Sato S, Asaumi T, Okada Y, Ogura K, Ebisawa M. A single‐center, case‐control study of low‐dose‐induction oral immunotherapy with cow’s milk. Int Arch Allergy Immunol. 2015; 168 ( 2 ): 131 ‐ 137.
dc.identifier.citedreferenceGalli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012; 18 ( 5 ): 693 ‐ 704.
dc.identifier.citedreferenceKim HY, DeKruyff RH, Umetsu DT. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol. 2010; 11 ( 7 ): 577 ‐ 584.
dc.identifier.citedreferenceAkdis M, Akdis CA. Mechanisms of allergen‐specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol. 2014; 133 ( 3 ): 621 ‐ 631.
dc.identifier.citedreferenceBielinska AU, O’Konek JJ, Janczak KW, Baker JR Jr. Immunomodulation of TH2 biased immunity with mucosal administration of nanoemulsion adjuvant. Vaccine. 2016; 34 ( 34 ): 4017 ‐ 4024.
dc.identifier.citedreferenceO’Konek JJ, Landers JJ, Janczak KW, et al. Nanoemulsion adjuvant‐driven redirection of TH2 immunity inhibits allergic reactions in murine models of peanut allergy. J Allergy Clin Immunol. 2018; 141 ( 6 ): 2121 ‐ 2131.
dc.identifier.citedreferenceMakidon PE, Bielinska AU, Nigavekar SS, et al. Pre‐clinical evaluation of a novel nanoemulsion‐based hepatitis B mucosal vaccine. PLoS One 2008; 3 ( 8 ): e2954.
dc.identifier.citedreferenceMyc A, Kukowska‐Latallo JF, Bielinska AU, et al. Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine. 2003; 21 ( 25‐26 ): 3801 ‐ 3814.
dc.identifier.citedreferenceAhrens R, Osterfeld H, Wu D, et al. Intestinal mast cell levels control severity of oral antigen‐induced anaphylaxis in mice. Am J Pathol. 2012; 180 ( 4 ): 1535 ‐ 1546.
dc.identifier.citedreferenceLi XM, Serebrisky D, Lee SY, et al. A murine model of peanut anaphylaxis: T‐ and B‐cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol. 2000; 106 ( 1 Pt 1 ): 150 ‐ 158.
dc.identifier.citedreferenceRodriguez B, Prioult G, Hacini‐Rachinel F, et al. Infant gut microbiota is protective against cow’s milk allergy in mice despite immature ileal T‐cell response. FEMS Microbiol Ecol. 2012; 79 ( 1 ): 192 ‐ 202.
dc.identifier.citedreferenceClassen DC, Morningstar JM, Shanley JD. Detection of antibody to murine cytomegalovirus by enzyme‐linked immunosorbent and indirect immunofluorescence assays. J Clin Microbiol. 1987; 25 ( 4 ): 600 ‐ 604.
dc.identifier.citedreferenceFrey A, Di Canzio J, Zurakowski D. A statistically defined endpoint titer determination method for immunoassays. J Immunol Methods. 1998; 221 ( 1‐2 ): 35 ‐ 41.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.