Show simple item record

Multilevel Nitrogen Additions Alter Chemical Composition and Turnover of the Labile Fraction Soil Organic Matter via Effects on Vegetation and Microorganisms

dc.contributor.authorChen, Qiuyu
dc.contributor.authorNiu, Bin
dc.contributor.authorHu, Yilun
dc.contributor.authorWang, Jian
dc.contributor.authorLei, Tianzhu
dc.contributor.authorXu‐ri, xu‐ri
dc.contributor.authorZhou, Jizhong
dc.contributor.authorXi, Chuanwu
dc.contributor.authorZhang, Gengxin
dc.date.accessioned2020-05-05T19:36:38Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:36:38Z
dc.date.issued2020-04
dc.identifier.citationChen, Qiuyu; Niu, Bin; Hu, Yilun; Wang, Jian; Lei, TianzhuXu‐ri, xu‐ri ; Zhou, Jizhong; Xi, Chuanwu; Zhang, Gengxin; (2020). "Multilevel Nitrogen Additions Alter Chemical Composition and Turnover of the Labile Fraction Soil Organic Matter via Effects on Vegetation and Microorganisms." Journal of Geophysical Research: Biogeosciences 125(4): n/a-n/a.
dc.identifier.issn2169-8953
dc.identifier.issn2169-8961
dc.identifier.urihttps://hdl.handle.net/2027.42/154963
dc.description.abstractGlobal nitrogen (N) deposition greatly impacts soil carbon sequestration. A 2- yr multiple N addition (0, 10, 20, 40, 80, and 160 kg N·ha- 1·yr- 1) experiment was conducted in alpine grassland to illustrate the mechanisms underlying the observed soil organic matter (SOM) dynamics on the Qinghai- Tibet Plateau (QTP). Labile fraction SOM (LF- SOM) fingerprints were characterized by pyrolysis- gas chromatography/tandem- mass spectrometry, and microbial functional genes (GeoChip 4.6) were analyzed in conjunction with LF- SOM fingerprints to decipher the responses of LF- SOM transformation to N additions. The significant correlations between LF- SOM and microbial biomass, between organic compounds in LF- SOM and compound degradation- related genes, and between LF- SOM and net ecosystem exchange implied LF- SOM were the main fraction utilized by microorganisms and the most sensitive fraction to N additions. The LF- SOM increased at the lowest N addition levels (10 and 20 kg N·ha- 1·yr- 1) and decreased at higher N addition levels (40 to 160 kg N·ha- 1·yr- 1), but the decrease of LF- SOM was weakened at 160 kg N·ha- 1·yr- 1 addition. The nonlinear response of LF- SOM to N additions was due to the mass balance between plant inputs and microbial degradation. Plant- derived compounds in LF- SOM were more sensitive to N addition than microbial- derived and aromatic compounds. It is predicted that when the N deposition rate increased by 10 kg N·ha- 1·yr- 1 on the QTP, carbon sequestration in the labile fraction may increase by nearly 170% compared with that under the current N deposition rate. These findings provide insight into future N deposition impacts on LF- SOM preservation on the QTP.Key PointsThe LF- SOM quantity increased at the lowest N additions (N10 and N20) and decreased from N40 to N160, but the decrease was weakened at the highest N addition (N160)Plant- derived compounds in LF- SOM were more sensitive to N addition than microbial- derived and aromatic compoundsThe organic compounds in LF- SOM were significantly correlated with compound degradation- related genes
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer- Verlag
dc.titleMultilevel Nitrogen Additions Alter Chemical Composition and Turnover of the Labile Fraction Soil Organic Matter via Effects on Vegetation and Microorganisms
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154963/1/jgrg21637_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154963/2/jgrg21637.pdf
dc.identifier.doi10.1029/2019JG005316
dc.identifier.sourceJournal of Geophysical Research: Biogeosciences
dc.identifier.citedreferenceRubin, E. M. ( 2008 ). Genomics of cellulosic biofuels. Nature, 454 ( 7206 ), 841 - 845. https://doi.org/10.1038/nature07190
dc.identifier.citedreferencePoirier, N., Sohi, S. P., Gaunt, J. L., Mahieu, N., Randall, E. W., Powlson, D. S., & Evershed, R. P. ( 2005 ). The chemical composition of measurable soil organic matter pools. Organic Geochemistry, 36, 1174 - 1189.
dc.identifier.citedreferenceSaiz- Jimenez, C. ( 1994 ). Production of alkylbenzenes and alkylnaphthalenes upon pyrolysis of unsaturated fatty acids. Naturwissenschaften, 81, 451 - 453.
dc.identifier.citedreferenceSchulten, H. R., Plage, B., & Schnitzer, M. ( 1991 ). A chemical structure for humic substances. Die Naturwissenschaften, 78 ( 7 ), 311 - 312. https://doi.org/10.1007/BF01221416
dc.identifier.citedreferenceSinsabaugh, R. L., Carreiro, M. M., & Repert, D. A. ( 2002 ). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1 - 24.
dc.identifier.citedreferenceThrone- Holst, M., Markussen, S., Winnberg, A., Ellingsen, T. E., Kotlar, H. K., & Zotchev, S. B. ( 2006 ). Utilization of n- alkanes by a newly isolated strain of Acinetobacter venetianus: The role of two AlkB- type alkane hydroxylases. Applied Microbiology and Biotechnology, 72 ( 2 ), 353 - 360. https://doi.org/10.1007/s00253- 005- 0262- 9
dc.identifier.citedreferenceTunlid, A., Hoitink, H., Low, C., & White, D. C. ( 1989 ). Characterization of bacteria that suppress rhizoctonia damping- off in bark compost media by analysis of fatty acid biomarkers. Applied and Environmental Microbiology, 55 ( 6 ), 1368 - 1374.
dc.identifier.citedreferencevan Bergen, P. ( 1998 ). Organic geochemical studies of soils from the Rothamsted Classical Experiments III. Nitrogen- containing macromolecular moieties in soil organic matter from Geescroft Wilderness. Nitrogen- Containing Macromolecules in the Bio- and Geosphere, 707, 321 - 338.
dc.identifier.citedreferenceWan, S. ( 2008 ). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428 - 439.
dc.identifier.citedreferenceWang, G., Li, Y., Wang, Y., & Wu, Q. ( 2008 ). Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai- Tibet Plateau, China. Geoderma, 143, 143 - 152.
dc.identifier.citedreferenceWang, J. Y., Zhang, X. Y., Wen, X. F., Wang, S. Q., & Wang, H. M. ( 2013 ). The effect of nitrogen deposition on forest soil organic matter and litter decomposition and the microbial mechanism. Acta Ecologica Sinica, 33 ( 5 ), 1337 - 1346.
dc.identifier.citedreferenceWang, L. X., & Macko, S. A. ( 2011 ). Constrained preferences in nitrogen uptake across plant species and environment [J]. Plant, Cell & Environment, 34 ( 3 ), 525 - 534.
dc.identifier.citedreferenceWei, Z., Yao, T., Joswiak, D. R., Xu, B., Wang, N., & Zhao, H. ( 2010 ). Major ions composition records from a shallow ice core on Mt. Tanggula in the central Qinghai- Tibetan Plateau. Atmospheric Research, 97, 70 - 79.
dc.identifier.citedreferenceWhite, D. C., Davis, W. M., Nickels, J. S., King, J. D., & Bobbie, R. J. ( 1979 ). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40, 51 - 62.
dc.identifier.citedreferenceWu, T., Schoenau, J. J., Li, F., Qian, P., & Malhi, S. S. ( 2004 ). Influence of cultivation on organic carbon in three typical soils of China Loess Plateau and Canada Prairies. The Journal of Applied Ecology, 14, 2213 - 2218.
dc.identifier.citedreferenceYang, Y., Ji, C., Ma, W., Wang, S., Wang, S., Han, W., Mohammat, A., Robinson, D., & Smith, P. ( 2012 ). Significant soil acidification across northern China’s grasslands during 1980s- 2000s. Global Change Biology, 18, 2292 - 2300.
dc.identifier.citedreferenceYao, M., Rui, J., Li, J., Dai, Y., Bai, Y., HedÄ nec, P., Wang, J., Zhang, S., Pei, K., & Liu, C. ( 2014 ). Rate- specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biology & Biochemistry, 79, 81 - 90.
dc.identifier.citedreferenceZaehle, S., Friedlingstein, P., & Friend, A. D. ( 2010 ). Terrestrial nitrogen feedbacks may accelerate future climate change. Geophysical Research Letters, 37, L01401. https://doi.org/10.1029/2009GL041345
dc.identifier.citedreferenceZech, W., Ziegler, F., Kögel- Knabner, I., & Haumaier, L. ( 1992 ). Humic substances distribution and transformation in forest soils. Science of the Total Environment, 117, 155 - 174.
dc.identifier.citedreferenceZelles, L. ( 1997 ). Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 35 ( 1- 2 ), 275 - 294. https://doi.org/10.1016/s0045- 6535(97)00155- 0
dc.identifier.citedreferenceZhang, D., Li, Z., Bao, X., Li, J., Liang, H., Duan, K., & Shen, L. ( 2010 ). Recent advances in bacterial biodegradation of naphthalene, phenanthrene by bacteria: A review. Sheng Wu Gong Cheng Xue Bao, 26 ( 6 ), 726 - 734.
dc.identifier.citedreferenceZhao, C., Peng, S., Honghua, R., & Zhang, Y. ( 2015 ). Effects of nitrogen deposition on soil microbes. Journal of Nanjing Forestry University, 39 ( 3 ), 149 - 155.
dc.identifier.citedreferenceZhao, H., Xu, B., Yao, T., Tian, L., & Zhen, L. ( 2011 ). Records of sulfate and nitrate in an ice core from Mount Muztagata, central Asia. Journal of Geophysical Research, 116, D13304. https://doi.org/10.1029/2011JD015735
dc.identifier.citedreferenceZhao, Z., Dong, S., Jiang, X., Zhao, J., Liu, S., Yang, M., Han, Y., & Sha, W. ( 2017 ). Are land use and short time climate change effective on soil carbon compositions and their relationships with soil properties in alpine grassland ecosystems on Qinghai- Tibetan Plateau? Science of the Total Environment, 625, 539.
dc.identifier.citedreferenceZhou, J., Jiang, X., Zhou, B., Zhao, B., Ma, M., Guan, D., Li, J., Chen, S., Cao, F., & Shen, D. ( 2016 ). Thirty- four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology & Biochemistry, 95, 135 - 143.
dc.identifier.citedreferenceAllison, S. D., Czimczik, C. I., & Treseder, K. K. ( 2010 ). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14, 1156 - 1168.
dc.identifier.citedreferenceAlmendros, G., Guadalix, M. E., González- Vila, F. J., & Martin, F. ( 1996 ). Preservation of aliphatic macromolecules in soil humins. Organic Geochemistry, 24, 651 - 659.
dc.identifier.citedreferenceBarré, P., Quénéa, K., Vidal, A., Cécillon, L., Christensen, B. T., Kätterer, T., Macdonald, A., Petit, L., Plante, A. F., van Oort, F., & Chenu, C. ( 2018 ). Microbial and plant- derived compounds both contribute to persistent soil organic carbon in temperate soils. Biogeochemistry, 140 ( 1 ), 81 - 92. https://doi.org/10.1007/s10533- 018- 0475- 5
dc.identifier.citedreferenceBerg, B., & McClaugherty, C. ( 2008 ). Plant litter: Decomposition, humus formation, carbon sequestration [M]. Berlin: Springer- Verlag.
dc.identifier.citedreferenceBergen, P. F. V., Nott, C. J., Bull, I. D., Poulton, P. R., & Evershed, R. P. ( 1998 ). Organic geochemical studies of soils from the Rothamsted Classical Experiments- IV. Preliminary results from a study of the effect of soil pH on organic matter decay. Organic Geochemistry, 29, 1779 - 1795.
dc.identifier.citedreferenceBobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., & Dentener, F. ( 2010 ). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20 ( 1 ), 30 - 59. https://doi.org/10.1890/08- 1140.1
dc.identifier.citedreferenceBragazza, L., Buttler, A., Habermacher, J., Brancaleoni, L., Gerdol, R., Fritze, H., Hanajík, P., Laiho, R., & Johnson, D. ( 2012 ). High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Global Change Biology, 18, 1163 - 1172.
dc.identifier.citedreferenceBragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., Ellis, T., Gerdol, R., Hájek, M., & Hájek, T. ( 2006 ). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19, 386 - 19,389.
dc.identifier.citedreferenceBremner, J. M. ( 1960 ). Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, 55, 11 - 33.
dc.identifier.citedreferenceBuurman, P., Peterse, F., & Almendros, G. ( 2007 ). Soil organic matter chemistry in allophanic soils: A pyrolysis- GC/MS study of a Costa Rican andosol catena. European Journal of Soil Science, 58 ( 6 ), 1330 - 1347.
dc.identifier.citedreferenceCanfield, D. E., Glazer, A. N., & Falkowski, P. G. ( 2010 ). The evolution and future of Earth’s nitrogen cycle. Science, 330 ( 6001 ), 192 - 196. https://doi.org/10.1126/science.1186120
dc.identifier.citedreferenceChai, X. L., Takayuki, S., Guo, Q., & Zhao, Y. C. ( 2008 ). Characterization of humic and fulvic acids extracted from landfill by elemental composition, 13 C CP/MAS NMR and TMAH- Py- GC/MS. Waste Management, 28 ( 5 ), 896 - 903.
dc.identifier.citedreferenceChen, Q., Wu, Y., Lei, T., Si, G., & Zhang, G. ( 2018 ). Study on the fingerprints of soil organic components in alpine grassland based on Py- GC- MS/MS technology. Acta Ecologica Sinica, 38, 2864 - 2873.
dc.identifier.citedreferenceChen, Q. Y., Lei, T. Z., Wu, Y. Q., Si, G. C., Xi, C. W., & Zhang, G. X. ( 2019 ). Comparison of soil organic matter transformation processes in different alpine ecosystems in the Qinghai- Tibet Plateau. Journal of Geophysical Research: Biogeosciences, 124, 33 - 45. https://doi.org/10.1029/2018JG004599
dc.identifier.citedreferenceChiavari, G., & Galletti, G. C. ( 1992 ). Pyrolysis- gas chromatography/mass spectrometry of amino acids. Journal of Analytical and Applied Pyrolysis, 24, 123 - 137.
dc.identifier.citedreferenceCompton, J. E., Watrud, L. S., Porteous, L. A., & Degrood, S. ( 2004 ). Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management, 196, 143 - 158.
dc.identifier.citedreferenceCong, J., Liu, X., Lu, H., Xu, H., Li, Y., Deng, Y., Li, D., & Zhang, Y. ( 2015 ). Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest. BMC Microbiology, 15, 167.
dc.identifier.citedreferenceCui, X., & Graf, H. F. ( 2009 ). Recent land cover changes on the Tibetan Plateau: A review. Climatic Change, 94, 47 - 61.
dc.identifier.citedreferenceDenef, K., Roobroeck, D., Manimel Wadu, M. C. W., Lootens, P., & Boeckx, P. ( 2009 ). Microbial community composition and rhizodeposit- carbon assimilation in differently managed temperate grassland soils. Soil Biology & Biochemistry, 41, 144 - 153.
dc.identifier.citedreferenceDong, X., Yuan, H., Gao, T., & University, B. J. ( 2014 ). Progress in studies of ligninolytic enzymes and genes. Biotechnology Bulletin, 11, 62 - 72.
dc.identifier.citedreferenceEisenlord, S. D., Freedman, Z., Zak, D. R., Xue, K., He, Z., & Zhou, J. ( 2013 ). Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition. Applied and Environmental Microbiology, 79 ( 4 ), 1191 - 1199. https://doi.org/10.1128/AEM.03156- 12
dc.identifier.citedreferenceFang, H., Cheng, S., Yu, G., Cooch, J., Wang, Y., Xu, M., Li, L., Dang, X., & Li, Y. ( 2014 ). Low- level nitrogen deposition significantly inhibits methane uptake from an alpine meadow soil on the Qinghai- Tibetan Plateau. Geoderma, 213, 444 - 452.
dc.identifier.citedreferenceFang, H., Cheng, S., Yu, G., Zheng, J., Zhang, P., Xu, M., Li, Y., & Yang, X. ( 2012 ). Responses of CO 2 efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi- form and low- level N addition. Plant and Soil, 351, 177 - 190.
dc.identifier.citedreferenceFederle, T. W., Dobbins, D. C., Thornton- Manning, J. R., & Jones, D. D. ( 2010 ). Microbial biomass, activity, and community structure in subsurface soils. Ground Water, 24 ( 3 ), 365 - 374.
dc.identifier.citedreferenceFierer, N., Colman, B. P., Schimel, J. P., & Jackson, R. B. ( 2006 ). Predicting the temperature dependence of microbial respiration in soil: A continental- scale analysis. Global Biogeochem Cycles, 20, GB3026. https://doi.org/10.1029/2005GB002644
dc.identifier.citedreferenceFierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., Owens, S., Gilbert, J. A., Wall, D. H., & Caporaso, J. G. ( 2012 ). Cross- biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 109, 21,390.
dc.identifier.citedreferenceFreedman, Z., Eisenlord, S. D., Zak, D. R., Xue, K., He, Z., & Zhou, J. ( 2013 ). Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition. Soil Biology & Biochemistry, 66, 130 - 138.
dc.identifier.citedreferenceFrey, S. D., Knorr, M., Parrent, J. L., & Simpson, R. T. ( 2004 ). Chronic N enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196, 159 - 171.
dc.identifier.citedreferenceFrostegård, à ., Bååth, E., & Tunlio, A. ( 1993 ). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723 - 730.
dc.identifier.citedreferenceGalloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. ( 2008 ). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320 ( 5878 ), 889 - 892. https://doi.org/10.1126/science.1136674
dc.identifier.citedreferenceGilliam, F. S. ( 2006 ). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 94, 1176 - 1191.
dc.identifier.citedreferenceGolchin ( 1995 ). Structural and dynamic properties of soil organic matter as reflected by 13 C natural abundance, pyrolysis mass spectrometry and solid- state 13 C NMR spectroscopy in density fractions of an oxisol under forest and pasture. Soil Research, 33, 59 - 76.
dc.identifier.citedreferenceGregorich, E. G., Monreal, C. M., Carter, M. R., Angers, D. A., & Ellert, B. H. ( 1994 ). Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science, 74, 367 - 385.
dc.identifier.citedreferenceGu, B., Chang, J., Min, Y., Ge, Y., Zhu, Q., Galloway, J. N., & Peng, C. ( 2013 ). The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Scientific Reports, 3, 2579.
dc.identifier.citedreferenceHan, C., Wang, Z., Si, G., Lei, T., Yuan, Y., & Zhang, G. ( 2017 ). Increased precipitation accelerates soil organic matter turnover associated with microbial community composition in topsoil of the alpine grassland on the eastern Tibetan Plateau. Canadian Journal of Microbiology, 63 ( 10 ), 811 - 821. https://doi.org/10.1139/cjm- 2017- 0157
dc.identifier.citedreferenceHan, X., Shen, W., Zhang, J., & Müller, C. ( 2018 ). Microbial adaptation to long- term N supply prevents large responses in N dynamics and N losses of a subtropical forest. Science of the Total Environment, 626, 1175.
dc.identifier.citedreferenceHobbie, S. E., Eddy, W. C., Buyarski, C. R., Adair, E. C., Ogdahl, M. L., & Weisenhorn, P. ( 2012 ). Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 82, 389 - 405.
dc.identifier.citedreferenceJobbagy, E. G., & Jackson, R. B. ( 2000 ). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423 - 436.
dc.identifier.citedreferenceJones, D. L., & Willett, V. B. ( 2006 ). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38, 991 - 999.
dc.identifier.citedreferenceKaal, J., Brodowski, S., Baldock, J. A., Nierop, K. G. J., & Cortizas, A. M. ( 2008 ). Characterisation of aged black carbon using pyrolysis- GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross- polarisation 13 C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Organic Geochemistry, 39, 1415 - 1426.
dc.identifier.citedreferenceKaal, J., Martínez- Cortizas, A., Nierop, K. G. J., & Buurman, P. ( 2008 ). A detailed pyrolysis- GC/MS analysis of a black carbon- rich acidic colluvial soil (Atlantic ranker) from NW Spain. Applied Geochemistry, 23, 2395 - 2405.
dc.identifier.citedreferenceKaal, J., & Rumpel, C. ( 2009 ). Can pyrolysis- GC/MS be used to estimate the degree of thermal alteration of black carbon? Organic Geochemistry, 40, 1179 - 1187.
dc.identifier.citedreferenceKhanna, P. K., Ludwig, B., Bauhus, J., & O’Hara, C. ( 2001 ). Assessment and significance of labile organic c pools in forest soils (pp. 167 - 182 ). Boca Raton, FL: Lewis Publisher.
dc.identifier.citedreferenceKiersch, K., Kruse, J., Eckhardt, K.- U., Fendt, A., & Leinweber, P. ( 2012 ). Impact of grassland burning on soil organic matter as revealed by a synchrotron- and pyrolysis- mass spectrometry- based multi- methodological approach. Organic Geochemistry, 44, 8 - 20.
dc.identifier.citedreferenceKnorr, M., Frey, S. D., & Curtis, P. S. ( 2005 ). Nitrogen additions and litter decomposition: A meta- analysis. Ecology, 86, 3252 - 3257.
dc.identifier.citedreferenceKuzyakov, Y. ( 2011 ). Ecology: Prime time for microbes. Nature Climate Change, 1, 295 - 297.
dc.identifier.citedreferenceLei, T., Si, G., Jian, W., & Zhang, G. ( 2017 ). Microbial communities and associated enzyme activities in alpine wetlands with increasing altitude on the Tibetan Plateau. Wetlands, 37, 401 - 412.
dc.identifier.citedreferenceLi, G. ( 2010 ). Effect of organic amendments and chemical fertilizer on soil microbial sctivity, biomass and community structure. Chinese Agricultural Science Bulletin, 26, 204 - 208.
dc.identifier.citedreferenceLi, X. G., Jia, B., Lv, J. T., Ma, Q. J., Kuzyakov, Y., & Li, F. M. ( 2017 ). Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology & Biochemistry, 112, 47 - 55.
dc.identifier.citedreferenceLiu, Y., Xu- Ri, Xu, X., Wei, D., Wang, Y., & Wang, Y. ( 2013 ). Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi- level nitrogen addition. Plant and Soil, 373 ( 1- 2 ), 515 - 529. https://doi.org/10.1007/s11104- 013- 1814- x
dc.identifier.citedreferenceLiu, Y. C., Li, L. Z., Wu, Y., Tian, W., Zhang, L. P., Xu, L., Shen, Q. R., & Shen, B. ( 2010 ). Isolation of an alkane- degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene. Bioresource Technology, 101 ( 1 ), 310 - 316. https://doi.org/10.1016/j.biortech.2009.08.028
dc.identifier.citedreferenceLiu, Y. Y., Wang, S., Shu Zhen, L. I., & Deng, Y. ( 2017 ). Advances in molecular ecology on microbial functional genes of carbon cycle. Microbiology China, 44 ( 7 ), 1676 - 1689.
dc.identifier.citedreferenceLjungdahl, L. G., & Eriksson, K. E. ( 1985 ). Ecology of microbial cellulose degradation. Advances in Microbial Ecology, 8, 237 - 299.
dc.identifier.citedreferenceLobe, I., Preez, C. C. D., & Amelung, W. ( 2010 ). Influence of prolonged arable cropping on lignin compounds in sandy soils of the South African Highveld. European Journal of Soil Science, 53, 553 - 562.
dc.identifier.citedreferenceLorenz, K., Lal, R., Preston, C. M., & Nierop, K. ( 2007 ). Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio (macro)molecules. Geoderma, 142 ( 1- 2 ), 1 - 10.
dc.identifier.citedreferenceLu, G., Shao, Y., & Li, X. ( 2014 ). Research progress in the effect of nitrogen deposition on litter decomposition. World Forestry Research, 27, 35 - 42.
dc.identifier.citedreferenceManning, P., Newington, J. E., Robson, H. R., Saunders, M., Eggers, T., Bradford, M. A., Bardgett, R. D., Bonkowski, M., Ellis, R. J., & Gange, A. C. ( 2010 ). Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecology Letters, 9, 1015 - 1024.
dc.identifier.citedreferenceMclauchlan, K. K., Williams, J. J., Craine, J. M., & Jeffers, E. S. ( 2013 ). Changes in global nitrogen cycling during the Holocene epoch. Nature, 495 ( 7441 ), 352 - 355. https://doi.org/10.1038/nature11916
dc.identifier.citedreferenceMeidute, S., Demoling, F., & Baath, E. ( 2008 ). Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry, 40, 2334 - 2343.
dc.identifier.citedreferenceMoyer, C. L., Dobbs, F. C., & Karl, D. M. ( 1995 ). Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Applied and Environmental Microbiology, 61 ( 4 ), 1555 - 1562.
dc.identifier.citedreferenceNadelhoffer, K. J. ( 2007 ). Atmospheric nitrogen deposition: Implications for terrestrial ecosystem structure and functioning (pp. 77 - 95 ). US: Springer.
dc.identifier.citedreferenceNeff, J. C., Townsend, A. R., Gleixner, G., Lehman, S. J., Turnbull, J., & Bowman, W. D. ( 2002 ). Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 419 ( 6910 ), 915 - 917. https://doi.org/10.1038/nature01136
dc.identifier.citedreferencePhoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J. M., Dise, N. B., Helliwell, R., Jones, L., Leake, J. R., Leith, I. D., & Sheppard, L. J. ( 2012 ). Impacts of atmospheric nitrogen deposition: Responses of multiple plant and soil parameters across contrasting ecosystems in long- term field experiments. Global Change Biology, 18, 1197 - 1215.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.