Show simple item record

Is the Relation Between the Solar Wind Dynamic Pressure and the Magnetopause Standoff Distance so Straightforward?

dc.contributor.authorSamsonov, A. A.
dc.contributor.authorBogdanova, Y. V.
dc.contributor.authorBranduardi‐raymont, G.
dc.contributor.authorSibeck, D. G.
dc.contributor.authorToth, G.
dc.date.accessioned2020-05-05T19:36:44Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:36:44Z
dc.date.issued2020-04-28
dc.identifier.citationSamsonov, A. A.; Bogdanova, Y. V.; Branduardi‐raymont, G. ; Sibeck, D. G.; Toth, G. (2020). "Is the Relation Between the Solar Wind Dynamic Pressure and the Magnetopause Standoff Distance so Straightforward?." Geophysical Research Letters 47(8): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/154966
dc.description.abstractWe present results of global magnetohydrodynamic simulations which reconsider the relationship between the solar wind dynamic pressure (Pd) and magnetopause standoff distance (RSUB). We simulate the magnetospheric response to increases in the dynamic pressure by varying separately the solar wind density or velocity for northward and southward interplanetary magnetic field (IMF). We obtain different values of the power law indices N in the relation RSUB- ¼Pd- 1/N depending on which parameter, density, or velocity, has been varied and for which IMF orientation. The changes in the standoff distance are smaller (higher N) for a density increase for southward IMF and greater (smaller N) for a velocity increase. An enhancement of the solar wind velocity for a southward IMF increases the magnetopause reconnection rate and Region 1 current that move the magnetopause closer to the Earth than it appears in the case of density increase for the same dynamic pressure.Plain Language SummaryThe magnetopause is the boundary between the near- Earth space, which is governed by the magnetic field produced in the Earth’s core, and interplanetary space populated by the plasma emitted from the Sun called the solar wind. It is well known that the position of this boundary is defined by the balance of the pressures from both sides of the magnetopause and in a unique way depends on the velocity and density of the plasma in the interplanetary space. In this work, we reexamine the relationship between the magnetopause position and parameters of the solar wind by means of computer modeling. It is shown that the relationship between solar wind velocity and density and magnetopause position is more complex than originally thought. It is suggested that the pressure balance condition through the magnetopause depends on the continuing magnetic reconnection between the interplanetary and magnetospheric magnetic field lines and that the consequences of the reconnection change the relationship between the solar wind dynamic pressure and magnetopause boundary location.Key PointsWe reconsider the relation between the solar wind dynamic pressure and magnetopause standoff distanceThe magnetopause reacts differently to density, and velocity increases for the same dynamic pressureA new scaling law for magnetopause standoff distance is proposed
dc.publisherThe Open University
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetopause standoff distance
dc.subject.othersolar wind dynamic pressure
dc.titleIs the Relation Between the Solar Wind Dynamic Pressure and the Magnetopause Standoff Distance so Straightforward?
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154966/1/grl60461_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154966/2/grl60461.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154966/3/grl60461-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2019GL086474
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceShue, J.- H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., & Singer, H. J. ( 1997 ). A new functional form to study the solar wind control of the magnetopause size and shape. Journal of Geophysical Research, 102 ( A5 ), 9497 - 9511. https://doi.org/10.1029/97JA00196
dc.identifier.citedreferenceMerkin, V. G., & Lyon, J. G. ( 2010 ). Effects of the low- latitude ionospheric boundary condition on the global magnetosphere. Journal of Geophysical Research, 115, A10202. https://doi.org/10.1029/2010JA015461
dc.identifier.citedreferenceNÄ meÄ ek, Z., Å afránková, J., Koval, A., Merka, J., & PÅ ech, L. ( 2011 ). MHD analysis of propagation of an interplanetary shock across magnetospheric boundaries. Journal of Atmospheric and Solar- Terrestrial Physics, 73, 20 - 29. https://doi.org/10.1016/j.jastp.2010.05.017
dc.identifier.citedreferenceNÄ meÄ ek, Z., Å afránková, J., Lopez, R. E., Dušík, Å ., Nouzák, L., PÅ ech, L., Å imÃ¥nek, J., & Shue, J.- H. ( 2016 ). Solar cycle variations of magnetopause locations. Advances in Space Research, 58, 240 - 248. https://doi.org/10.1016/j.asr.2015.10.012
dc.identifier.citedreferenceOwens, M. J., & Cargill, P. J. ( 2002 ). Correlation of magnetic field intensities and solar wind speeds of events observed by ACE. Journal of Geophysical Research, 107 ( A5 ), SSH 1 - 1- SSH 1- 7. https://doi.org/10.1029/2001JA000238
dc.identifier.citedreferencePetrinec, S. M., & Russell, C. T. ( 1996 ). Near- Earth magnetotail shape and size as determined from the magnetopause flaring angle. Journal of Geophysical Research, 101, 137 - 152. https://doi.org/10.1029/95JA02834
dc.identifier.citedreferenceRaab, W., Branduardi- Raymont, G., Dai, L., Wang, C., Donovan, E., Enno, G., Escoubet, P., Holland, A., Jing, L., Kataria, D., Li, L., Read, A., Rebuffat, D., Romstedt, J., Runciman, C., Sembay, S., Spanswick, E., Sykes, J., Thornhill, J., Wielders, A., Zhang, A., & Zheng, J. ( 2016 ). SMILE: A joint ESA/CAS mission to investigate the interaction between the solar wind and Earth’s magnetosphere. In Space telescopes and instrumentation 2016: Ultraviolet to gamma ray (Vol.  9905, p. 990502 ). The Open University. https://doi.org/10.1117/12.2231984
dc.identifier.citedreferenceRoelof, E. C., & Sibeck, D. G. ( 1993 ). Magnetopause shape as a bivariate function of interplanetary magnetic field B z and solar wind dynamic pressure. Journal of Geophysical Research, 98, 21. https://doi.org/10.1029/93JA02362
dc.identifier.citedreferenceSamsonov, A. A., Gordeev, E., Tsyganenko, N. A., Å afránková, J., NÄ meÄ ek, Z., Å imunek, J., Sibeck, D. G., Tóth, G., Merkin, V. G., & Raeder, J. ( 2016 ). Do we know the actual magnetopause position for typical solar wind conditions? Journal of Geophysical Research: Space Physics, 121, 6493 - 6508. https://doi.org/10.1002/2016JA022471
dc.identifier.citedreferenceSamsonov, A. A., & Sibeck, D. G. ( 2013 ). Large- scale flow vortices following a magnetospheric sudden impulse. Journal of Geophysical Research:Space Physics, 118, 3055 - 3064. https://doi.org/10.1002/jgra.50329
dc.identifier.citedreferenceSamsonov, A. A., Sibeck, D. G., & Imber, J. ( 2007 ). MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere. Journal of Geophysical Research, 112, A12220. https://doi.org/10.1029/2007JA012627
dc.identifier.citedreferenceSamsonov, A. A., Sibeck, D. G., Zolotova, N. V., Biernat, H. K., Chen, S.- H., Rastaetter, L., Rastaetter, L., Singer, H. J., & Baumjohann, W. ( 2011 ). Propagation of a sudden impulse through the magnetosphere initiating magnetospheric Pc5 pulsations. Journal of Geophysical Research, 116, A10216. https://doi.org/10.1029/2011JA016706
dc.identifier.citedreferenceSamsonov, A. A., Sibeck, D. G., Å afránková, J., NÄ meÄ ek, Z., & Shue, J.- H. ( 2017 ). A method to predict magnetopause expansion in radial imf events by MHD simulations. Journal of Geophysical Research: Space Physics, 122, 3110 - 3126. https://doi.org/10.1002/2016JA023301
dc.identifier.citedreferenceAubry, M. P., Russell, C. T., & Kivelson, M. G. ( 1970 ). Inward motion of the magnetopause before a substorm. Journal of Geophysical Research, 75 ( 34 ), 7018 - 7031. https://doi.org/10.1029/JA075i034p07018
dc.identifier.citedreferenceShue, J.- H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., & Kawano, H. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research, 103, 17,691 - 17,700. https://doi.org/10.1029/98JA01103
dc.identifier.citedreferenceSibeck, D. G. ( 1994 ). Signatures of flux erosion from the dayside magnetosphere. Journal of Geophysical Research, 99, 8513 - 8529. https://doi.org/10.1029/93JA03298
dc.identifier.citedreferenceSibeck, D. G., Lopez, R. E., & Roelof, E. C. ( 1991 ). Solar wind control of the magnetopause shape, location, and motion. Journal of Geophysical Research, 96 ( A4 ), 5489 - 5495. https://doi.org/10.1029/90JA02464
dc.identifier.citedreferenceSiscoe, G. L., Erickson, G. M., Sonnerup, B. U.., Maynard, N. C., Schoendorf, J. A., Siebert, K. D., Weimer, D. R., White, W. W., & Wilson, G. R. ( 2002 ). Hill model of transpolar potential saturation: Comparisons with MHD simulations. Journal of Geophysical Research, 107 ( A6 ), SMP 8 - 1- SMP 8- 8. https://doi.org/10.1029/2001JA000109
dc.identifier.citedreferenceSuvorova, A. V., & Dmitriev, A. V. ( 2015 ). Magnetopause inflation under radial IMF: Comparison of models. Earth and Space Science, 2, 107 - 114. https://doi.org/10.1002/2014EA000084
dc.identifier.citedreferenceSuvorova, A. V., Shue, J.- H., Dmitriev, A. V., Sibeck, D. G., McFadden, J. P., Hasegawa, H., Ackerson, K., Jelínek, K., Å afránková, J., & NÄ meÄ ek, Z. ( 2010 ). Magnetopause expansions for quasi- radial interplanetary magnetic field: THEMIS and Geotail observations. Journal of Geophysical Research, 115, A10216. https://doi.org/10.1029/2010JA015404
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., de Zeeuw, D. L., Hansen, K. C., Kane, K. J., Manchester, W. B., Oehmke, R. C., Powell, K. G., Ridley, A. J., Roussev, I. I., Stout, Q. F., Volberg, O., Wolf, RichardA., Sazykin, S., Chan, A., Yu, B., & Kóta, J. ( 2005 ). Space weather modeling framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., Darren L., Manchester, W. B., Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer, A., Ma, Y.- J., & Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231, 870 - 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceTsyganenko, N. A., & Sibeck, D. G. ( 1994 ). Concerning flux erosion from the dayside magnetosphere. Journal of Geophysical Research, 99 ( A7 ), 13,425 - 13,436. https://doi.org/10.1029/94JA00719
dc.identifier.citedreferenceBeard, D. B. ( 1960 ). The interaction of the terrestrial magnetic field with the solar corpuscular radiation. Journal of Geophysical Research, 65, 3559. https://doi.org/10.1029/JZ065i011p03559
dc.identifier.citedreferenceBorovsky, J. E., & Birn, J. ( 2014 ). The solar wind electric field does not control the dayside reconnection rate. Journal of Geophysical Research: Space Physics, 119, 751 - 760. https://doi.org/10.1002/2013JA019193
dc.identifier.citedreferenceBorovsky, J. E., Hesse, M., Birn, J., & Kuznetsova, M. ( 2008 ). What determines the reconnection rate at the dayside magnetosphere? Journal of Geophysical Research, 113, A07210. https://doi.org/10.1029/2007JA012645
dc.identifier.citedreferenceCassak, P. A., & Shay, M. A. ( 2007 ). Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Physics of Plasmas, 14 ( 10 ), 102114. https://doi.org/10.1063/1.2795630
dc.identifier.citedreferenceChapman, S., & Ferraro, V. C. A. ( 1931 ). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 36 ( 2 ), 77 - 97. https://doi.org/10.1029/TE036i002p00077
dc.identifier.citedreferenceDušík, V., Granko, G., Å afránková, J., NÄ meÄ ek, Z., & Jelínek, K. ( 2010 ). IMF cone angle control of the magnetopause location: Statistical study. Geophysical Research Letters, 37, L19103. https://doi.org/10.1029/2010GL044965
dc.identifier.citedreferenceFairfield, D. H. ( 1971 ). Average and unusual locations of the Earth’s magnetopause and bow shock. Journal of Geophysical Research (1896- 1977), 76 ( 28 ), 6700 - 6716. https://doi.org/10.1029/JA076i028p06700
dc.identifier.citedreferenceFok, M.- C., Buzulukova, N. Y., Chen, S.- H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The comprehensive inner magnetosphere- ionosphere model. Journal of Geophysical Research: Space Physics, 119, 7522 - 7540. https://doi.org/10.1002/2014JA020239
dc.identifier.citedreferenceFreeman, M. P., Freeman, N. C., & Farrugia, C. J. ( 1995 ). A linear perturbation analysis of magnetopause motion in the Newton- Busemann limit. Annales Geophysicae, 13 ( 9 ), 907 - 918. https://doi.org/10.1007/s00585-995-0907-0
dc.identifier.citedreferenceGrygorov, K., Å afránková, J., NÄ meÄ ek, Z., Pi, G., PÅ ech, L., & UrbáŠ, J. ( 2017 ). Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field. Planetary and Space Science, 148, 28 - 34. https://doi.org/10.1016/j.pss.2017.09.011
dc.identifier.citedreferenceHill, T. W., Dessler, A. J., & Wolf, R. A. ( 1976 ). Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles. Geophysical Research Letters, 3 ( 8 ), 429 - 432. https://doi.org/10.1029/GL003i008p00429
dc.identifier.citedreferenceHill, T. W., & Rassbach, M. E. ( 1975 ). Interplanetary magnetic field direction and the configuration of the day side magnetosphere. Journal of Geophysical Research, 80 ( 1 ), 1 - 6. https://doi.org/10.1029/JA080i001p00001
dc.identifier.citedreferenceLin, R. L., Zhang, X. X., Liu, S. Q., Wang, Y. L., & Gong, J. C. ( 2010 ). A three- dimensional asymmetric magnetopause model. Journal of Geophysical Research, 115, A04207. https://doi.org/10.1029/2009JA014235
dc.identifier.citedreferenceLiu, Z.- Q., Lu, J. Y., Wang, C., Kabin, K., Zhao, J. S., Wang, M., Wang, M., Han, J. P., Wang, J. Y., & Zhao, M. X. ( 2015 ). A three- dimensional high mach number asymmetric magnetopause model from global MHD simulation. Journal of Geophysical Research: Space Physics, 120, 5645 - 5666. https://doi.org/10.1002/2014JA020961
dc.identifier.citedreferenceLu, J. Y., Liu, Z.- Q., Kabin, K., Zhao, M. X., Liu, D. D., Zhou, Q., & Xiao, Y. ( 2011 ). Three dimensional shape of the magnetopause: Global MHD results. Journal of Geophysical Research, 116, A09237. https://doi.org/10.1029/2010JA016418
dc.identifier.citedreferenceLyon, J. G., Fedder, J. A., & Mobarry, C. M. ( 2004 ). The Lyon- Fedder- Mobarry (LFM) global MHD magnetospheric simulation code. Journal of Atmospheric and Solar- Terrestrial Physics, 66, 1333 - 1350. https://doi.org/10.1016/j.jastp.2004.03.020
dc.identifier.citedreferenceMerka, J., Szabo, A., Å afránková, J., & NÄ meÄ ek, Z. ( 2003 ). Earth’s bow shock and magnetopause in the case of a field- aligned upstream flow: Observation and model comparison. Journal of Geophysical Research, 108 ( A7 ), 1269. https://doi.org/10.1029/2002JA009697
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.