Show simple item record

Realization of an Asymmetric Non‐Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition

dc.contributor.authorShrestha, Anuska
dc.contributor.authorHendriks, Koen H.
dc.contributor.authorSigman, Mathew S.
dc.contributor.authorMinteer, Shelley D.
dc.contributor.authorSanford, Melanie S.
dc.date.accessioned2020-05-05T19:36:58Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:36:58Z
dc.date.issued2020-04-24
dc.identifier.citationShrestha, Anuska; Hendriks, Koen H.; Sigman, Mathew S.; Minteer, Shelley D.; Sanford, Melanie S. (2020). "Realization of an Asymmetric Non‐Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition." Chemistry – A European Journal 26(24): 5369-5373.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/154972
dc.description.abstractThis communication presents a mechanism‐based approach to identify organic electrolytes for non‐aqueous redox flow batteries (RFBs). Symmetrical flow cell cycling of a pyridinium anolyte and a cyclopropenium catholyte resulted in extensive capacity fade due to competing decomposition of the pyridinium species. Characterization of this decomposition pathway enabled the rational design of next‐generation anolyte/catholyte pairs with dramatically enhanced cycling performance. Three factors were identified as critical for slowing capacity fade: (1) separating the anolyte–catholyte in an asymmetric flow cell using an anion exchange membrane (AEM); (2) moving from monomeric to oligomeric electrolytes to limit crossover through the AEM; and (3) removing the basic carbonyl moiety from the anolyte to slow the protonation‐induced decomposition pathway. Ultimately, these modifications led to a novel anolyte–catholyte pair that can be cycled in an AEM‐separated asymmetric RFB for 96 h with >95 % capacity retention at an open circuit voltage of 1.57 V.Applied molecular design! This study presents a mechanism‐based approach to the molecular design of electrolytes for implementation in an asymmetric non‐aqueous redox flow battery.
dc.publisherWiley Periodicals, Inc.
dc.subject.othernon-aqueous
dc.subject.othercrossover
dc.subject.otherredox flow batteries
dc.subject.otherasymmetric
dc.subject.otheranolyte decomposition
dc.titleRealization of an Asymmetric Non‐Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154972/1/chem202000749-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154972/2/chem202000749.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154972/3/chem202000749_am.pdf
dc.identifier.doi10.1002/chem.202000749
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceR. Naef, Helv. Chim. Acta 1982, 65, 1734 – 1742.
dc.identifier.citedreferenceS. K. Park, J. Shim, J. Yang, K. H. Shin, C. S. Jin, B. S. Lee, Y. S. Lee, J. D. Jeon, Electrochem. Commun. 2015, 59, 68 – 71;
dc.identifier.citedreferenceX. Wei, W. Xu, J. Huang, L. Zhang, E. Walter, C. Lawrence, M. Vijayakumar, W. A. Henderson, T. Liu, L. Cosimbescu, Angew. Chem. Int. Ed. 2015, 54, 8684 – 8687; Angew. Chem. 2015, 127, 8808 – 8811;
dc.identifier.citedreferenceSimilar decomposition is observed for N -ethyl-2,6-dimethyl-4-benzoylpyridinium, which was previously optimized for stability against radical dimerization (ref. [5a]).
dc.identifier.citedreferenceS.-H. Shin, S.-H. Yun, S.-H. Moon, RSC Adv. 2013, 3, 9095 – 9116.
dc.identifier.citedreferenceFor recent examples of flow cell cycling with Fumasep FAPQ-375-PP in MeCN, see:
dc.identifier.citedreferenceY. Yan, S. G. Robinson, M. S. Sigman, M. S. Sanford, J. Am. Chem. Soc. 2019, 141, 15301 – 15306;
dc.identifier.citedreferenceS. G. Robinson, Y. Yan, K. H. Hendriks, M. S. Sanford, M. S. Sigman, J. Am. Chem. Soc. 2019, 141, 10171 – 10176.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. J. Baran, M. N. Braten, E. C. Montoto, Z. T. Gossage, L. Ma, E. Chenard, J. S. Moore, J. Rodriguez-Lopez, B. A. Helms, Chem. Mater. 2018, 30, 3861 – 3866;
dc.identifier.citedreferenceS. E. Doris, A. L. Ward, A. Baskin, P. D. Frischmann, N. Gavvalapalli, E. Chenard, C. S. Sevov, D. Prendergast, J. S. Moore, B. A. Helms, Angew. Chem. Int. Ed. 2017, 56, 1595 – 1599; Angew. Chem. 2017, 129, 1617 – 1621.
dc.identifier.citedreferenceSee Supporting Information for complete chemical and electrochemical characterization of CP-tri and Py1-di.
dc.identifier.citedreferenceN. Leventis, I. A. Elder, X. Gao, E. W. Bohannan, C. Sotiriou-Leventis, A. M. M. Rawashdeh, T. J. Overschmidt, K. R. Gaston, J. Phys. Chem. B 2001, 105, 3663 – 3674.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. D. Thériault, C. Radford, M. Parvez, B. Heyne, T. C. Sutherland, Phys. Chem. Chem. Phys. 2015, 17, 20903 – 20911;
dc.identifier.citedreferenceZ. Rappoport, Isr. J. Chem. 1970, 8, 749 – 751;
dc.identifier.citedreferenceK. Wallenfels, K. Friedrich, J. Rieser, W. Ertel, H. K. Thieme, Angew. Chem. 1976, 88, 311 – 320;
dc.identifier.citedreferenceL. M. Doane, A. J. Fatiadi, Angew. Chem. Int. Ed. Engl. 1982, 21, 635 – 636; Angew. Chem. 1982, 94, 649 – 650;
dc.identifier.citedreferenceZ.-M. Xue, C.-H. Chen, Int. J. Quantum Chem. 2007, 107, 637 – 646;
dc.identifier.citedreferenceC. G. Armstrong, R. W. Hogue, K. E. Toghill, J. Power Sources 2019, 440, 227037.
dc.identifier.citedreferenceM. Hosseini-Sarvari, H. Shargi, S. Etemad, Chin. J. Chem. 2007, 25, 1563 – 1567.
dc.identifier.citedreferenceThe first and second reductions of Py1-di (to afford the neutral diradical species) occur at the same potential (−1.01 V). See Figure S1(b) for CV.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Larcher, J. Tarascon, Nat. Chem. 2015, 7, 19 – 29;
dc.identifier.citedreferenceT. M. Gür, Energy Eviron. Sci. 2018, 11, 2696 – 2767.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. L. Soloveichik, Chem. Rev. 2015, 115, 11533 – 11558;
dc.identifier.citedreferenceX. Wei, W. Pan, W. Duan, A. Hollas, Z. Yang, B. Li, X. Nie, J. Liu, D. Reed, W. Wang, V. Sprenkle, ACS Energy Lett. 2017, 2, 2187 – 2204;
dc.identifier.citedreferenceJ. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem. Int. Ed. 2015, 54, 9776 – 9809; Angew. Chem. 2015, 127, 9912 – 9947;
dc.identifier.citedreferenceJ. Rugolo, M. J. Aziz, Energy Environ. Sci. 2012, 5, 7151 – 7160;
dc.identifier.citedreferenceJ. Winsberg, T. Hagemann, T. Janoschka, M. D. Hager, U. S. Schubert, Angew. Chem. Int. Ed. 2017, 56, 686 – 711; Angew. Chem. 2017, 129, 702 – 729;
dc.identifier.citedreferenceP. V. Kamat, K. S. Schanze, J. M. Buriak, ACS Energy Lett. 2017, 2, 1368 – 1369.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Ding, Y. Zhao, Y. Li, J. B. Goodenough, G. Yu, Energy Environ. Sci. 2017, 10, 491 – 497;
dc.identifier.citedreferenceB. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Nature 2014, 505, 195 – 198;
dc.identifier.citedreferenceK. Lin, R. Gomez-Bombarelli, E. S. Beh, L. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M. J. Aziz, R. G. Gordon, Nat. Energy 2016, 1, 16102;
dc.identifier.citedreferenceT. Janoschka, N. Martin, M. D. Hager, U. S. Schubert, Angew. Chem. Int. Ed. 2016, 55, 14427 – 14430; Angew. Chem. 2016, 128, 14639 – 14643;
dc.identifier.citedreferenceB. Hu, C. DeBruler, Z. Rhodes, T. L. Liu, J. Am. Chem. Soc. 2017, 139, 1207 – 1214;
dc.identifier.citedreferenceT. B. Schon, B. T. McAllister, P. F. Li, D. S. Seferos, Chem. Soc. Rev. 2016, 45, 6345 – 6404.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Zhang, Z. Yang, I. A. Shkrob, R. S. Assary, S. Tung, B. Silcox, W. Duan, J. Zhang, C. C. Su, B. Hu, B. Pan, C. Liao, Z. Zhang, W. Wang, L. A. Curtiss, L. T. Thompson, X. Wei, L. Zhang, Adv. Energy Mater. 2017, 7, 1701272;
dc.identifier.citedreferenceL. Su, M. Ferrandon, J. A. Kowalski, J. T. Vaughey, F. R. Brushett, J. Electrochem. Soc. 2014, 161, A1905 – A1914;
dc.identifier.citedreferenceW. Wang, V. Sprenkle, Nat. Chem. 2016, 8, 204 – 206;
dc.identifier.citedreferenceW. Wang, Q. T. Luo, B. Li, X. L. Wei, L. Y. Li, Z. G. Yang, Adv. Funct. Mater. 2013, 23, 970 – 986;
dc.identifier.citedreferenceJ. Winsberg, T. Hagemann, S. Muench, C. Friebe, B. Haupler, T. Janoschka, S. Morgenstem, M. D. Hager, U. S. Schubert, Chem. Mater. 2016, 28, 3401 – 3405;
dc.identifier.citedreferenceM. Burgess, J. S. Moore, J. Rodriguez-Lopez, Acc. Chem. Res. 2016, 49, 2649 – 2657;
dc.identifier.citedreferenceE. C. Montoto, G. Nagarjuna, J. S. Moore, J. Rodriguez-Lopez, J. Electrochem. Soc. 2017, 164, A1688 – A1694.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. S. Sevov, D. P. Hickey, M. E. Cook, S. G. Robinson, S. Barnett, S. D. Minteer, M. S. Sigman, M. S. Sanford, J. Am. Chem. Soc. 2017, 139, 2924 – 2927;
dc.identifier.citedreferenceC. S. Sevov, S. K. Samaroo, M. S. Sanford, Adv. Energy Mater. 2017, 7, 1602027;
dc.identifier.citedreferenceK. H. Hendriks, S. G. Robinson, M. N. Braten, C. S. Sevov, B. A. Helms, M. S. Sigman, S. D. Minteer, M. S. Sanford, ACS Cent. Sci. 2018, 4, 189 – 196;
dc.identifier.citedreferenceX. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W. Wang, Adv. Mater. 2014, 26, 7649 – 7653;
dc.identifier.citedreferenceB. Hu, T. L. Liu, J. Energy Chem. 2018, 27, 1326 – 1332.
dc.identifier.citedreference 
dc.identifier.citedreferenceQ. Chen, L. Eisenach, M. J. Aziz, J. Electrochem. Soc. 2016, 163, A5057 – A5063;
dc.identifier.citedreferenceM. R. Gerhardt, E. S. Beh, L. Tong, R. G. Gordon, M. J. Aziz, MRS Adv. 2017, 2, 431 – 438;
dc.identifier.citedreferenceM.-A. Goulet, L. Tong, D. A. Pollack, D. P. Tabor, S. A. Odom, A. Aspuru-Guzik, E. E. Kwan, R. G. Gordon, M. J. Aziz, J. Am. Chem. Soc. 2019, 141, 8014 – 8019;
dc.identifier.citedreferenceL. Tong, Y. Jing, R. G. Gordon, M. J. Aziz, ACS Appl. Energy Mater. 2019, 2, 4016 – 4021;
dc.identifier.citedreferenceL. Tong, M.-A. Goulet, D. P. Tabor, E. F. Kerr, D. De Porcellinis, E. M. Fell, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, ACS Energy Lett. 2019, 4, 1880 – 1887;
dc.identifier.citedreferenceJ. Zhang, I. A. Shkrob, R. S. Assary, S. O. Tung, B. Silcox, L. A. Curtiss, L. Thompson, L. Zhang, J. Phys. Chem. C 2017, 121, 23347 – 23358.
dc.identifier.citedreferencePy1 was selected as the anolyte for these studies based on its synthetic accessibility (i.e., the synthesis of Py1 is readily scalable and proceeds in 1 step from commercial materials).
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Duan, J. Huang, J. A. Kowalski, I. A. Shkrob, M. Vijayakumar, E. Walter, B. Pan, Z. Yang, J. D. Milshtein, B. Li, C. Liao, Z. Zhang, W. Wang, J. Liu, J. S. Moore, F. R. Brushett, L. Zhang, X. Wei, ACS Energy Lett. 2017, 2, 1156 – 1161;
dc.identifier.citedreferenceJ. Huang, W. Duan, J. Zhang, I. A. Skrob, R. S. Assary, B. Pan, C. Liao, Z. Zhang, X. Wei, L. Zhang, J. Mater. Chem. A 2018, 6, 6251 – 6254;
dc.identifier.citedreferenceJ. Huang, Z. Yang, M. Vijayakumar, W. Duan, A. Hollas, B. Pan, W. Wang, X. Wei, L. Zhang, Adv. Sustainable Syst. 2018, 2, 1700131;
dc.identifier.citedreferenceX. Wei, W. Duan, J. Huang, L. Zhang, B. Li, D. Reed, W. Xu, V. Sprenkle, W. Wang, ACS Energy Lett. 2016, 1, 705 – 711.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. D. Milshtein, A. P. Kaur, M. D. Casselman, J. A. Kowalski, S. Modekrutti, P. L. Zhang, N. H. Attanayake, C. F. Elliott, S. R. Parkin, C. Risko, F. R. Brushett, S. A. Odom, Energy Environ. Sci. 2016, 9, 3531 – 3543;
dc.identifier.citedreferenceJ. D. Milshtein, J. L. Barton, R. M. Darling, F. R. Brushett, J. Power Sources 2016, 327, 151 – 159.
dc.identifier.citedreferenceBoth of the decomposed compounds are reoxidized to the ketone in the presence of air.
dc.identifier.citedreferenceControl experiments reveal that neither Py1 nor Py-1. decompose to Py1-OH or Py1-H 2 when stored for 96 h in 0.5  m KPF 6 in MeCN. Furthermore, <5 % decomposition is observed over this timescale during half-cell electrochemical cycling of Py1. Leventis et al. have reported on similar decomposition products during the electrochemical cycling of pyridinium salts in the presence of proton donors. Similarly, we observe that half-cell electrochemical cycling of Py1 in the presence of 5 equivalents of acetic acid leads to quantitative conversion to Py1-OH. Overall, this leads us to hypothesize that the radical cation of CP (generated during flow cell cycling in this system) reacts with adventitious water to generate protons, which then lead to the decay of the anolyte.
dc.identifier.citedreferenceProtonation has frequently been invoked as a parasitic reaction leading to decomposition of ROMs, particularly those containing a carbonyl moiety. See:
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.