Show simple item record

Influence of Dynamic Ozone Dry Deposition on Ozone Pollution

dc.contributor.authorClifton, O. E.
dc.contributor.authorPaulot, F.
dc.contributor.authorFiore, A. M.
dc.contributor.authorHorowitz, L. W.
dc.contributor.authorCorrea, G.
dc.contributor.authorBaublitz, C. B.
dc.contributor.authorFares, S.
dc.contributor.authorGoded, I.
dc.contributor.authorGoldstein, A. H.
dc.contributor.authorGruening, C.
dc.contributor.authorHogg, A. J.
dc.contributor.authorLoubet, B.
dc.contributor.authorMammarella, I.
dc.contributor.authorMunger, J. W.
dc.contributor.authorNeil, L.
dc.contributor.authorStella, P.
dc.contributor.authorUddling, J.
dc.contributor.authorVesala, T.
dc.contributor.authorWeng, E.
dc.date.accessioned2020-05-05T19:37:06Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:37:06Z
dc.date.issued2020-04-27
dc.identifier.citationClifton, O. E.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Correa, G.; Baublitz, C. B.; Fares, S.; Goded, I.; Goldstein, A. H.; Gruening, C.; Hogg, A. J.; Loubet, B.; Mammarella, I.; Munger, J. W.; Neil, L.; Stella, P.; Uddling, J.; Vesala, T.; Weng, E. (2020). "Influence of Dynamic Ozone Dry Deposition on Ozone Pollution." Journal of Geophysical Research: Atmospheres 125(8): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/154976
dc.description.abstractIdentifying the contributions of chemistry and transport to observed ozone pollution using regional‐to‐global models relies on accurate representation of ozone dry deposition. We use a recently developed configuration of the NOAA GFDL chemistry‐climate model – in which the atmosphere and land are coupled through dry deposition—to investigate the influence of ozone dry deposition on ozone pollution over northern midlatitudes. In our model, deposition pathways are tied to dynamic terrestrial processes, such as photosynthesis and water cycling through the canopy and soil. Small increases in winter deposition due to more process‐based representation of snow and deposition to surfaces reduce hemispheric‐scale ozone throughout the lower troposphere by 5–12 ppb, improving agreement with observations relative to a simulation with the standard configuration for ozone dry deposition. Declining snow cover by the end of the 21st‐century tempers the previously identified influence of rising methane on winter ozone. Dynamic dry deposition changes summer surface ozone by −4 to +7 ppb. While previous studies emphasize the importance of uptake by plant stomata, new diagnostic tracking of depositional pathways reveals a widespread impact of nonstomatal deposition on ozone pollution. Daily variability in both stomatal and nonstomatal deposition contribute to daily variability in ozone pollution. Twenty‐first century changes in summer deposition result from a balance among changes in individual pathways, reflecting differing responses to both high carbon dioxide (through plant physiology versus biomass accumulation) and water availability. Our findings highlight a need for constraints on the processes driving ozone dry deposition to test representation in regional‐to‐global models.Key PointsRemote and local ozone depositional sinks shape regional winter ozone pollutionDynamic ozone dry deposition changes summer surface ozone over northern midlatitude regions by −4 to +7 ppbVariability and 21st-century changes in both stomatal and nonstomatal deposition influence summer surface ozone distributions
dc.publisherWiley Periodicals, Inc.
dc.publisherUnited Nations
dc.subject.otherdry deposition
dc.subject.othertropospheric ozone
dc.subject.otherstomatal conductance
dc.subject.otherearth system modeling
dc.subject.othernonstomatal deposition
dc.subject.otherair pollution
dc.titleInfluence of Dynamic Ozone Dry Deposition on Ozone Pollution
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154976/1/jgrd56151-sup-0002-Figure_SI-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154976/2/jgrd56151-sup-0006-Text_SI-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154976/3/jgrd56151.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154976/4/jgrd56151-sup-0004-Figure_SI-S04.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154976/5/jgrd56151-sup-0003-Figure_SI-S02.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154976/6/jgrd56151_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154976/7/jgrd56151-sup-0004-Figure_SI-S03.pdf
dc.identifier.doi10.1029/2020JD032398
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRieder, H. E., Fiore, A. M., Clifton, O. E., Correa, G., Horowitz, L. W., & Naik, V. ( 2018 ). Combining model projections with site‐level observations to estimate changes in distributions and seasonality of ozone in surface air over the U.S.A. Atmospheric Environment, 193, 302 – 315.
dc.identifier.citedreferenceRiahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & Rafaj, P. ( 2011 ). RCP 8.5–A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109 ( 1‐2 ), 33.
dc.identifier.citedreferenceSarwar, G., Kang, D., Foley, K., Schwede, D., Gantt, B., & Mathur, R. ( 2016 ). Technical note: Examining ozone deposition over seawater. Atmospheric Environment, 141, 255 – 262.
dc.identifier.citedreferenceSchultz, M. G., Schröder, S., Lyapina, O., Cooper, O., Galbally, I., Petropavlovskikh, I., von Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R., Dauert, U., Eckhardt, P., Feigenspahn, S., Fiebig, M., Hjellbrekke, A.‐G., Hong, Y.‐D., Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M.‐T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas, E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Huber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D., Lam, K.‐S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L., McClure‐Begley, A., Mohamad, M., Murovic, M., Navarro‐Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, I., Simmonds, P., Sinha, V., Skorokhod, A., Spain, G., Spangl, W., Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Weili, L., Weller, R., Xu, X., Xue, L., & Zhiqiang, M. ( 2017a ). Tropospheric ozone assessment report: Database and metrics data of global surface ozone observations. Elementa Science of the Anthropocene, 5 ( 0 ), 58.
dc.identifier.citedreferenceSchultz, M. G., Schröder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., von Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt, P., Feigenspan, S., Fiebig, M., Hjellbrekke, A.‐G., Hong, Y.‐D., Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M.‐T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M. E., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas‐Agulló, E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Hueber, J., Im, U., Jaffe, Da. A., Komala, N., Kubistin, D., Lam, K.‐S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L. R., McClure‐Begley, A., Mohamad, M., Murovec, M., Navarro‐Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, I., Simmonds, P., Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W., Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Weili, L., Weller, R., Xu, X., Xue, L., & Zhiqiang, M. ( 2017b ). Tropospheric ozone assessment report, links to global surface ozone datasets [data set]. PANGAEA. https://doi.org/10.1594/PANGAEA.876108
dc.identifier.citedreferenceShevliakova, E., Pacala, S. W., Malyshev, S., Hurtt, G. C., Milly, P. C. D., Caspersen, J. P., Sentman, L. T., Fisk, J. P., Wirth, C., & Crevoisier, C. ( 2009 ). Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochemical Cycles, 23, GB2022. https://doi.org/10.1029/2007GB003176
dc.identifier.citedreferenceSilva, S. J., & Heald, C. L. ( 2018 ). Investigating dry deposition of ozone to vegetation. Journal of Geophysical Research: Atmospheres, 123, 559 – 573. https://doi.org/10.1002/2017JD027278
dc.identifier.citedreferenceSitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., & Venevsky, S. ( 2003 ). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9 ( 2 ), 161 – 185.
dc.identifier.citedreferenceSmith, N. G., Malyshev, S. L., Shevliakova, E., Kattge, J., & Dukes, J. S. ( 2016 ). Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nature Climate Change, 6 ( 4 ), 407.
dc.identifier.citedreferenceSmith, W. K., Reed, S. C., Cleveland, C. C., Ballantyne, A. P., Anderegg, W. R., Wieder, W. R., Liu, Y. Y., & Running, S. W. ( 2016 ). Large divergence of satellite and earth system model estimates of global terrestrial CO 2 fertilization. Nature Climate Change, 6 ( 3 ), 306.
dc.identifier.citedreferenceSolberg, S., Hov, Ø., Søvde, A., Isaksen, I. S. A., Coddeville, P., De Backer, H., Forster, C., Orsolini, Y., & Uhse, K. ( 2008 ). European surface ozone in the extreme summer 2003. Journal of Geophysical Research, 113, D07307. https://doi.org/10.1029/2007JD009098
dc.identifier.citedreferenceStella, P., Loubet, B., de Berranger, C., Charrier, X., Ceschia, E., Gerosa, G., Finco, A., Lamaud, E., SerÃğa, D., George, C., & Ciuraru, R. ( 2019 ). Soil ozone deposition: Dependence of soil resistance to soil texture. Atmospheric Environment, 199, 202 – 209.
dc.identifier.citedreferenceStella, P., Loubet, B., Lamaud, E., Laville, P., & Cellier, P. ( 2011 ). Ozone deposition onto bare soil: A new parameterisation. Agricultural and Forest Meteorology, 151 ( 6 ), 669 – 681.
dc.identifier.citedreferenceStella, P., Personne, E., Loubet, B., Lamaud, E., Ceschia, E., Béziat, P., Bonnefond, J. M., Irvine, M., Keravec, P., Mascher, N., & Cellier, P. ( 2011 ). Predicting and partitioning ozone fluxes to maize crops from sowing to harvest: The Surfatm‐O 3 model. Biogeosciences, 8 ( 10 ), 2869 – 2886.
dc.identifier.citedreferenceStocker, D. W., Zeller, K. F., & Stedman, D. H. ( 1995 ). O 3 and NO 2 fluxes over snow measured by eddy correlation. Atmospheric Environment, 29 ( 11 ), 1299 – 1305.
dc.identifier.citedreferenceSulman, B. N., Shevliakova, E., Brzostek, E. R., Kivlin, S. N., Malyshev, S., Menge, D. N., & Zhang, X. ( 2019 ). Diverse mycorrhizal associations enhance terrestrial c storage in a global model. Global Biogeochemical Cycles, 33, 501 – 523. https://doi.org/10.1029/2018GB005973
dc.identifier.citedreferenceSun, S., Moravek, A., Trebs, I., Kesselmeier, J., & Sörgel, M. ( 2016 ). Investigation of the influence of liquid surface films on O 3 and PAN deposition to plant leaves coated with organic/inorganic solution. Journal of Geophysical Research: Atmospheres, 121, 14,239 – 14,256. https://doi.org/10.1002/2016JD025519
dc.identifier.citedreferenceTerrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., & Prentice, I. C. ( 2016 ). Mycorrhizal association as a primary control of the CO 2 fertilization effect. Science, 353 ( 6294 ), 72 – 74.
dc.identifier.citedreferenceTilmes, S., Lamarque, J. F., Emmons, L. K., Conley, A., Schultz, M. G., Saunois, M., Thouret, V., Thompson, A. M., Oltmans, S. J., Johnson, B., & Tarasick, D. ( 2012 ). Technical note: Ozonesonde climatology between 1995 and 2011: Description, evaluation and applications. Atmospheric Chemistry and Physics, 12 ( 16 ), 7475 – 7497.
dc.identifier.citedreferenceTrail, M., Tsimpidi, A. P., Liu, P., Tsigaridis, K., Hu, Y., Nenes, A., Stone, B., & Russell, A. G. ( 2015 ). Reforestation and crop land conversion impacts on future regional air quality in the Southeastern U.S. Agricultural and Forest Meteorology, 209‐210, 78 – 86.
dc.identifier.citedreferenceTravis, K. R., & Jacob, D. J. ( 2019 ). Systematic bias in evaluating chemical transport models with maximum daily 8 h average (MDA8) surface ozone for air quality applications: a case study with GEOS‐Chem v9.02. Geoscientific Model Development, 12 ( 8 ), 3641 – 3648. https://www.geosci-model-dev.net/12/3641/2019/
dc.identifier.citedreferenceTravis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A. M., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Cohen, R. C., Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M., Pollack, I. B., Peischl, J., Neuman, J. A., & Zhou, X. ( 2016 ). Why do models overestimate surface ozone in the southeast United States?. Atmospheric Chemistry and Physics, 16 ( 21 ), 13,561 – 13,577.
dc.identifier.citedreferenceTurnipseed, A. A., Burns, S. P., Moore, DavidJ. P., Hu, J., Guenther, A. B., & Monson, R. K. ( 2009 ). Controls over ozone deposition to a high elevation subalpine forest. Agricultural and Forest Meteorology, 149 ( 9 ), 1447 – 1459.
dc.identifier.citedreferenceVan Pul, W. A. J., & Jacobs, A. F. G. ( 1994 ). The conductance of a maize crop and the underlying soil to ozone under various environmental conditions. Boundary‐Layer Meteorology, 69, 83 – 99.
dc.identifier.citedreferencevan Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. ( 2011 ). The representative concentration pathways: An overview. Climatic Change, 109 ( 1 ), 5 – 31.
dc.identifier.citedreferenceWalker, T. W. ( 2014 ). Applications of adjoint modelling in chemical composition: studies of tropospheric ozone at middle and high northern latitudes (Ph.D. Thesis), University of Toronto.
dc.identifier.citedreferenceWang, D., Hinckley, T. M., Cumming, A. B., & Braatne, J. ( 1995 ). A comparison of measured and modeled ozone uptake into plant leaves. Environmental Pollution, 89 ( 3 ), 247 – 254.
dc.identifier.citedreferenceWang, Y., Jacob, D. J., & Logan, J. A. ( 1998 ). Global simulation of tropospheric O 3 ‐NO x ‐hydrocarbon chemistry: 1. Model formulation. Journal of Geophysical Research, 103, 10,713 – 10,725.
dc.identifier.citedreferenceWeng, E. S., Malyshev, S., Lichstein, J. W., Farrior, C. E., Dybzinski, R., Zhang, T., Shevliakova, E., & Pacala, S. W. ( 2015 ). Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height‐structured competition. Biogeosciences, 12 ( 9 ), 2655 – 2694.
dc.identifier.citedreferenceWesely, M. L. ( 1989 ). Parameterization of surface resistance to gaseous dry deposition in regional‐scale numerical model. Atmospheric Environment, 23 ( 6 ), 1293 – 1304.
dc.identifier.citedreferenceWesely, M. L., Cook, D. R., & Williams, R. M. ( 1981 ). Field measurements of small ozone fluxes to snow, wet bare soil, and lake water. Boundary‐Layer Meteorology, 20, 1293 – 1304.
dc.identifier.citedreferenceWesely, M. L., & Hicks, B. B. ( 1977 ). Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. Journal of the Air Pollution Control Association, 27 ( 11 ), 1110 – 1116.
dc.identifier.citedreferenceWieder, W. R., Cleveland, C. C., Smith, W. K., & Todd‐Brown, K. ( 2015 ). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8 ( 6 ), 441.
dc.identifier.citedreferenceWild, O. ( 2007 ). Modelling the global tropospheric ozone budget: Exploring the variability in current models. Atmospheric Chemistry and Physics, 7 ( 10 ), 2643 – 2660.
dc.identifier.citedreferenceWong, A. Y. H., Geddes, J. A., Tai, A. P. K., & Silva, S. J. ( 2019 ). Importance of dry deposition parameterization choice in global simulations of surface ozone. Atmospheric Chemistry and Physics, 19 ( 22 ), 14,365 – 14,385. https://www.atmos-chem-phys.net/19/14365/2019/
dc.identifier.citedreferenceWu, S., Mickley, L. J., Kaplan, J. O., & Jacob, D. J. ( 2012 ). Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmospheric Chemistry and Physics, 12 ( 3 ), 1597 – 1609.
dc.identifier.citedreferenceWu, Z., Schwede, D. B., Vet, R., Walker, J. T., Shaw, M., Staebler, R., & Zhang, L. ( 2018 ). Evaluation and intercomparison of five North American dry deposition algorithms at a mixed forest site. Journal of Advances in Modeling Earth Systems, 10, 1571 – 1586. https://doi.org/10.1029/2017MS001231
dc.identifier.citedreferenceWu, Z., Staebler, R., Vet, R., & Zhang, L. ( 2016 ). Dry deposition of O 3 and SO 2 estimated from gradient measurements above a temperate mixed forest. Environmental Pollution, 210, 202 – 210.
dc.identifier.citedreferenceYuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., Sitch, S., Smith, W. K., Wang, F., Wu, C., Xiao, Z., & Yang, S. ( 2019 ). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5 ( 8 ), eaax1396.
dc.identifier.citedreferenceZhang, L., Brook, J. R., & Vet, R. ( 2002 ). On ozone dry deposition—With emphasis on non‐stomatal uptake and wet canopies. Atmospheric Environment, 36 ( 30 ), 4787 – 4799.
dc.identifier.citedreferenceZhang, L., Brook, J. R., & Vet, R. ( 2003 ). A revised parameterization for gaseous dry deposition in air‐quality models. Atmospheric Chemistry and Physics, 3 ( 6 ), 2067 – 2082.
dc.identifier.citedreferenceAldaz, L. ( 1969 ). Flux measurements of atmospheric ozone over land water. Journal of Geophysical Research, 74, 6943 – 6946.
dc.identifier.citedreferenceAltimir, N., Kolari, P., Tuovinen, J.‐P., Vesala, T., BÃďck, J., Suni, T., Kulmala, M., & Hari, P. ( 2006 ). Foliage surface ozone deposition: a role for surface moisture? Biogeosciences, 3 ( 2 ), 209 – 228.
dc.identifier.citedreferenceAnav, A., Proietti, C., Menut, L., Carnicelli, S., De Marco, A.., & Paoletti, E. ( 2018 ). Sensitivity of stomatal conductance to soil moisture: Implications for tropospheric ozone. Atmospheric Chemistry and Physics, 18 ( 8 ), 5747 – 5763.
dc.identifier.citedreferenceAndersson, C., & Engardt, M. ( 2010 ). European ozone in a future climate: Importance of changes in dry deposition and isoprene emissions. Journal of Geophysical Research, 115, 1 – 13. https://doi.org/10.1029/2008JD011690
dc.identifier.citedreferenceBonan, G. B. ( 1996 ). Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and users guide ( Technical Note ). Boulder, CO, United States: National Center for Atmospheric Research.
dc.identifier.citedreferenceBonan, G. B., & Levis, S. ( 2006 ). Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. Journal of Climate, 19 ( 11 ), 2290 – 2301.
dc.identifier.citedreferenceBurkhardt, J., & Hunsche, M. ( 2013 ). “Breath figures” on leaf surfaces—Formation and effects of microscopic leaf wetness. Frontiers in Plant Science, 4 ( 422 ), 1 – 9.
dc.identifier.citedreferenceBusinger, J. A., Wyngaard, J. C., Izumi, Y., & Bradley, E. F. ( 1971 ). Flux‐profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences, 28 ( 2 ), 181 – 189.
dc.identifier.citedreferenceChoudhury, B. J., & Monteith, J. L. ( 1988 ). A four‐layer model for the heat budget of homogeneous land surfaces. Quarterly Journal of the Royal Meteorological Society, 114 ( 480 ), 373 – 398.
dc.identifier.citedreferenceCieslik, S. ( 2009 ). Ozone fluxes over various plant ecosystems in italy: A review. Environmental Pollution, 157 ( 5 ), 1487 – 1496.
dc.identifier.citedreferenceClifton, O. E., Fiore, A. M., Correa, G., Horowitz, L. W., & Naik, V. ( 2014 ). Twenty‐first century reversal of the surface ozone seasonal cycle over the northeastern United States. Geophysical Research Letters, 41, 7343 – 7350. https://doi.org/10.1002/2014GL061378
dc.identifier.citedreferenceClifton, O. E., Fiore, A. M., Massman, W. J., Baublitz, C. B., Coyle, M., Emberson, L., Fares, S., Farmer, D. K., Gentine, P., Gerosa, G., Guenther, A. B., Helmig, D., Lombardozzi, D. L., Munger, J. W., Patton, E. G., Pusede, S. E., Schwede, D. B., Silva, S. J., Sörgel, M., Steiner, A. L., & Tai, A. P. K. ( 2020 ). Dry deposition of ozone over land: Processes, measurement, and modeling. Reviews of Geophysics, 58, e2019RG000670. https://doi.org/10.1029/2019RG000670
dc.identifier.citedreferenceClifton, O. E., Fiore, A. M., Munger, J. W., Malyshev, S., Horowitz, L. W., Shevliakova, E., Paulot, F., Murray, L. T., & Griffin, K. L. ( 2017 ). Interannual variability in ozone removal by a temperate deciduous forest. Geophysical Research Letters, 44, 542 – 552. https://doi.org/10.1002/2016GL070923
dc.identifier.citedreferenceClifton, O. E., Fiore, A. M., Munger, J. W., & Wehr, R. ( 2019 ). Spatiotemporal controls on observed daytime ozone deposition velocity over northeastern U.S. forests during summer. Journal of Geophysical Research: Atmospheres, 44, 542 – 552. https://doi.org/10.1002/2016GL070923
dc.identifier.citedreferenceColbeck, I., & Harrison, R. M. ( 1985 ). Dry deposition of ozone—Some measurements of deposition velocity and of vertical profiles to 100‐metres. Atmospheric Environment, 19, 1807 – 1818.
dc.identifier.citedreferenceCollatz, G. J., Ball, J. T., Grivet, C., & Berry, J. A. ( 1991 ). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54 ( 2 ), 107 – 136.
dc.identifier.citedreferenceCollatz, G. J., Ribas‐Carbo, M., & Berry, J. A. ( 1992 ). Coupled photosynthesis‐stomatal conductance model for leaves of C 4 plants. Functional Plant Biology, 19 ( 5 ), 519 – 538.
dc.identifier.citedreferenceHelmig, D., Cohen, L. D., Bocquet, F., Oltmans, S., Grachev, A., & Neff, W. ( 2009 ). Spring and summertime diurnal surface ozone fluxes over the polar snow at Summit, Greenland. Geophysical Research Letters, 36, L08809. https://doi.org/10.1029/2008GL036549
dc.identifier.citedreferenceDe Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Hickler, T., Jain, A. K., Luo, Y., Parton, W. J., Prentice, I. C., Smith, B., Thornton, P. E., Wang, S., Wang, Y.‐P., Wěrlind, D., Weng, E., Crous, K. Y., Ellsworth, D. S., Hanson, P. J., Seok Kim, H., Warren, J. M., Oren, R., & Norby, R. J. ( 2013 ). Forest water use and water use efficiency at elevated CO 2: A model‐data intercomparison at two contrasting temperate forest face sites. Global Change Biology, 19 ( 6 ), 1759 – 1779. https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12164
dc.identifier.citedreferenceDonner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J.‐C., Ginoux, P., Lin, S.‐J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H.‐C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C. D., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. John, Winton, M., Wittenberg, A. T., & Zeng, F. ( 2011 ). The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate, 24 ( 13 ), 3484 – 3519.
dc.identifier.citedreferenceEmberson, L. D., Simpson, D., Tuovinen, J.‐P., Ashmore, M. R., & Cambridge, H. M. ( 2000 ). Towards a model of ozone deposition and stomatal uptake over Europe.
dc.identifier.citedreferenceEmmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., & Kloster, S. ( 2010 ). Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART‐4). Geoscientific Model Development, 3 ( 1 ), 43 – 67.
dc.identifier.citedreferenceErisman, J. W., Van Pul, A., & Wyers, P. ( 1994 ). Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmospheric Environment, 28 ( 16 ), 2595 – 2607.
dc.identifier.citedreferenceFan, Y., Meijide, A., Lawrence, D. M., Roupsard, O., Carlson, K. M., Chen, H.‐Y., Röll, A., Niu, F., & Knohl, A. ( 2019 ). Reconciling canopy interception parameterization and rainfall forcing frequency in the community land model for simulating evapotranspiration of rainforests and oil palm plantations in Indonesia. Journal of Advances in Modeling Earth Systems, 11, 732 – 751. https://doi.org/10.1029/2018MS001490
dc.identifier.citedreferenceFang, H., Baret, F., Plummer, S., & Schaepman‐Strub, G. ( 2019 ). An overview of global leaf area index (lai): Methods, products, validation, and applications. Reviews of Geophysics, 57, 739 – 799. https://doi.org/10.1029/2018RG000608
dc.identifier.citedreferenceFang, H., Jiang, C., Li, W., Wei, S., Baret, F., Chen, J. M., Garcia‐Haro, J., Liang, S., Liu, R., Myneni, R. B., Pinty, B., Xiao, Z., & Zhu, Z. ( 2013 ). Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties. Journal of Geophysical Research: Biogeosciences, 118 ( 2 ), 529 – 548. https://doi.org/10.1002/jgrg.20051
dc.identifier.citedreferenceFares, S., McKay, M., Holzinger, R., & Goldstein, A. H. ( 2010 ). Ozone fluxes in a pinus ponderosa ecosystem are dominated by non‐stomatal processes: Evidence from long‐term continuous measurements. Agricultural and Forest Meteorology, 150 ( 3 ), 420 – 431.
dc.identifier.citedreferenceFares, S., Savi, F., Muller, J., Matteucci, G., & Paoletti, E. ( 2014 ). Simultaneous measurements of above and below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a Mediterranean oak forest. Agricultural and Forest Meteorology, 198–199, 181 – 191.
dc.identifier.citedreferenceFares, S., Weber, R., Park, J. H., Gentner, D., Karlik, J., & Goldstein, A. H. ( 2012 ). Ozone deposition to an orange orchard: Partitioning between stomatal and non‐stomatal sinks. Environmental Pollution, 169, 258 – 266.
dc.identifier.citedreferenceFarquhar, G. D., von Caemmerer, S., & Berry, J. A. ( 1980 ). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149 ( 1 ), 78 – 90.
dc.identifier.citedreferenceFinkelstein, P. L. ( 2001 ). Deposition velocities of SO 2 and O 3 over agricultural and forest ecosystems. Water, Air, and Soil Pollution, 1, 49 – 57.
dc.identifier.citedreferenceFinkelstein, P. L., Ellestad, T. G., Clarke, J. F., Meyers, T. P., Schwede, D. B., Hebert, E. O., & Neal, J. A. ( 2000 ). Ozone and sulfur dioxide dry deposition to forests: Observations and model evaluation. Journal of Geophysical Research, 105 ( D12 ), 15,365 – 15,377.
dc.identifier.citedreferenceFiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., & Zuber, A. ( 2009 ). Multimodel estimates of intercontinental source‐receptor relationships for ozone pollution. Journal of Geophysical Research, 114, D04301. https://doi.org/10.1029/2008JD010816
dc.identifier.citedreferenceHelmig, D, Ganzeveld, L, Butler, T, & Oltmans, SJ ( 2007 ). The role of ozone atmosphere‐snow gas exchange on polar, boundary‐layer tropospheric ozone—A review and sensitivity analysis. Atmospheric Chemistry and Physics, 7 ( 1 ), 15 – 30.
dc.identifier.citedreferenceHelmig, D., Lang, E. K., Bariteau, L., Boylan, P., Fairall, C. W., Ganzeveld, L., Hare, J. E., Hueber, J., & Pallandt, M. ( 2012 ). Atmosphere‐ocean ozone fluxes during the TexAQS 2006, STRATUS 2006, GOMECC 2007, GasEx 2008, and AMMA 2008 cruises. Journal of Geophysical Research, 117 ( 4 ), 1 – 15. https://doi.org/10.1029/2011JD015955
dc.identifier.citedreferenceFowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C., Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink‐Kruit, R., Butterbach‐Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T. N., Ro‐Poulsen, H., Cellier, P., Cape, J. N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P. I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U., Büggemann, N., Zechmeister‐Boltenstern, S., Williams, J., O’Dowd, C., Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., & Erisman, J. W. ( 2009 ). Atmospheric composition change: Ecosystems‐atmosphere interactions. Atmospheric Environment, 43 ( 33 ), 5193 – 5267.
dc.identifier.citedreferenceFriedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.‐G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., & Zeng, N. ( 2006 ). Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 19 ( 14 ), 3337 – 3353.
dc.identifier.citedreferenceFu, Y., & Tai, A. P. K. ( 2015 ). Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010. Atmospheric Chemistry and Physics, 15, 10,093 – 10,106.
dc.identifier.citedreferenceFuentes, J. D., & Gillespie, T. J. ( 1992 ). A gas exchange system to study the effects of leaf surface wetness on the deposition of ozone. Atmospheric Environment, 26 ( 6 ), 1165 – 1173.
dc.identifier.citedreferenceFuentes, J. D., Gillespie, T. J., den Hartog, G., & Neumann, H. H. ( 1992 ). Ozone deposition onto a deciduous forest during dry and wet conditions. Agricultural and Forest Meteorology, 62 ( 1‐2 ), 1 – 18.
dc.identifier.citedreferenceFumagalli, I., Gruening, C., Marzuoli, R., Cieslik, S., & Gerosa, G. ( 2016 ). Long‐term measurements of NO x and O 3 soil fluxes in a temperate deciduous forest. Agricultural and Forest Meteorology, 228‐229, 205 – 216.
dc.identifier.citedreferenceGalbally, I., & Allison, I. ( 1972 ). Ozone fluxes over snow surfaces. Journal of Geophysical Research, 77 ( 21 ), 3946 – 3949.
dc.identifier.citedreferenceGalbally, I. E., & Roy, C. R. ( 1980 ). Destruction of ozone at the earth’s surface. Quarterly Journal of the Royal Meteorological Society, 106 ( 449 ), 599 – 620.
dc.identifier.citedreferenceGanzeveld, L., Bouwman, L., Stehfest, E., Van Vuuren, D. P., Eickhout, B., & Lelieveld, J. ( 2010 ). Impact of future land use and land cover changes on atmospheric chemistry‐climate interactions. Journal of Geophysical Research, 115, 1 – 18. https://doi.org/10.1029/2010JD014041
dc.identifier.citedreferenceGanzeveld, L., Helmig, D., Fairall, C. W., Hare, J., & Pozzer, A. ( 2009 ). Atmosphere‐ocean ozone exchange: A global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies. Global Biogeochemical Cycles, 23, 1 – 16. https://doi.org/10.1029/2008GB003301
dc.identifier.citedreferenceGao, Y., Fu, J. S., Drake, J. B., Lamarque, J. F., & Liu, Y. ( 2013 ). The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs). Atmospheric Chemistry and Physics, 13 ( 18 ), 9607 – 9621.
dc.identifier.citedreferenceGeddes, J. A., Heald, C. L., Silva, S. J., & Martin, R. V. ( 2016 ). Land cover change impacts on atmospheric chemistry: Simulating projected large‐scale tree mortality in the United States. Atmospheric Chemistry and Physics, 16 ( 4 ), 2323 – 2340.
dc.identifier.citedreferenceGerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W., & Shevliakova, E. ( 2010 ). Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochemical Cycles, 24, GB1001. https://doi.org/10.1029/2008GB003336
dc.identifier.citedreferenceGong, S. L., Walmsley, J. L., Barrie, L. A., & Hopper, J. F. ( 1997 ). Mechanisms for surface ozone depletion and recovery during polar sunrise. Atmospheric Environment, 31 ( 7 ), 969 – 981.
dc.identifier.citedreferenceGreen, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., & Gentine, P. ( 2019 ). Large influence of soil moisture on long‐term terrestrial carbon uptake. Nature, 565 ( 7740 ), 476.
dc.identifier.citedreferenceGuenther, A, Karl, T, Harley, P., Wiedinmyer, C, Palmer, P., & Geron, C ( 2006 ). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6 ( 11 ), 3181 – 3210.
dc.identifier.citedreferenceGüsten, H., Heinrich, G., Mönnich, E., Sprung, D., Weppner, J., Ramadan, A. B., El‐Din, M. R. E., Ahmed, D. M., & Hassan, G. K. ( 1996 ). On‐line measurements of ozone surface fluxes: Part II. Surface‐level ozone fluxes onto the sahara desert. Atmospheric Environment, 30 ( 6 ), 911 – 918.
dc.identifier.citedreferenceHTAP ( 2010 ). Hemispheric transport of air pollution 2010, Part A: Ozone and particulate matter, air pollution studies no. 17. New York: United Nations.
dc.identifier.citedreferenceHardacre, C., Wild, O., & Emberson, L. ( 2015 ). An evaluation of ozone dry deposition in global scale chemistry climate models. Atmospheric Chemistry and Physics, 15 ( 11 ), 6419 – 6436.
dc.identifier.citedreferenceHeald, C. L., & Geddes, J. A. ( 2016 ). The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone. Atmospheric Chemistry and Physics, 16 ( 23 ), 14,997 – 15,010.
dc.identifier.citedreferenceHicks, B. B., & Liss, P. S. ( 1976 ). Transfer of SO 2 and other reactive gases across the air‐sea interface. Tellus, 27 ( 4 ), 348 – 354.
dc.identifier.citedreferenceHogg, A. ( 2007 ). Stomatal and non‐stomatal fluxes of ozone, NO x, and NO y to a northern mixed hardwood forest (Ph.D. Thesis).
dc.identifier.citedreferenceHogg, A., Uddling, J., Ellsworth, D., Carroll, M. A., Pressley, S., Lamb, B., & Vogel, C. ( 2007 ). Stomatal and non‐stomatal fluxes of ozone to a northern mixed hardwood forest. Tellus B, 59 ( 3 ), 514 – 525.
dc.identifier.citedreferenceHogrefe, C., Liu, P., Pouliot, G., Mathur, R., Roselle, S., Flemming, J., Lin, M., & Park, R. J. ( 2018 ). Impacts of different characterizations of large‐scale background on simulated regional‐scale ozone over the continental United States. Atmospheric Chemistry and Physics, 18 ( 5 ), 3839 – 3864.
dc.identifier.citedreferenceHollaway, M. J., Arnold, S. R., Collins, W. J., Folberth, G., & Rap, A. ( 2016 ). Sensitivity of midnineteenth century tropospheric ozone to atmospheric chemistry‐vegetation interactions. Journal of Geophysical Research: Atmospheres, 122, 1 – 22. https://doi.org/10.1002/2016JD025462
dc.identifier.citedreferenceHopper, J., Barrie, L., Silis, A, Hart, W, Gallant, A., & Dryfhout, H ( 1998 ). Ozone and meteorology during the 1994 polar sunrise experiment. Journal of Geophysical Research, 103 ( D1 ), 1481 – 1492.
dc.identifier.citedreferenceHuang, L., McDonald‐Buller, E. C., McGaughey, G., Kimura, Y., & Allen, D. T. ( 2016 ). The impact of drought on ozone dry deposition over eastern Texas. Atmospheric Environment, 127, 176 – 186.
dc.identifier.citedreferenceHumphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S., & Seneviratne, S. I. ( 2018 ). Sensitivity of atmospheric CO 2 growth rate to observed changes in terrestrial water storage. Nature, 560 ( 7720 ), 628.
dc.identifier.citedreferenceHurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C. D., Kindermann, G., Kinoshita, T., Goldewijk, K. K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., Thornton, P., van Vuuren, D. P., & Wang, Y. P. ( 2011 ). Harmonization of land‐use scenarios for the period 1500‐2100: 600 years of global gridded annual land‐use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109 ( 1 ), 117 – 161.
dc.identifier.citedreferenceJarvis, P. G. ( 1976 ). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society London B, 273, 593 – 610.
dc.identifier.citedreferenceJensen, N. O., & Hummelshøj, P. ( 1995 ). Derivation of canopy resistance for water vapour fluxes over a spruce forest, using a new technique for the viscous sublayer resistance. Agricultural and Forest Meteorology, 73 ( 3‐4 ), 339 – 352.
dc.identifier.citedreferenceJensen, N. O., & Hummelshøj, P. ( 1997 ). Erratum to “Derivation of canopy resistance for water vapour fluxes over a spruce forest, using a new technique for the viscous sublayer resistance” [agricultural and forest meteorology 73 (1995) 339‐352]. Agricultural and Forest Meteorology, 85, 289.
dc.identifier.citedreferenceJohn, J. G., Fiore, A. M., Naik, V., Horowitz, L. W., & Dunne, J. P. ( 2012 ). Climate versus emission drivers of methane lifetime against loss by tropospheric oh from 1860‐2100. Atmospheric Chemistry and Physics, 12 ( 24 ), 12,021 – 12,036.
dc.identifier.citedreferenceKavassalis, S. C., & Murphy, J. G. ( 2017 ). Understanding ozone‐meteorology correlations: A role for dry deposition. Geophysical Research Letters, 44, 2922 – 2931. https://doi.org/10.1002/2016GL071791
dc.identifier.citedreferenceLaisk, A., Kull, O., & Moldau, H. ( 1989 ). Ozone concentration in leaf intercellular air spaces Is Close to Zero. Plant Physiology, 90 ( 3 ), 1163 – 1167.
dc.identifier.citedreferenceLamarque, J. F., Kyle, P. P., Meinshausen, M., Riahi, K., Smith, S. J., van Vuuren, D. P., Conley, A. J., & Vitt, F. ( 2011 ). Global and regional evolution of short‐lived radiatively‐active gases and aerosols in the representative concentration pathways. Climatic Change, 109 ( 1 ), 191 – 212.
dc.identifier.citedreferenceLeuning, R ( 1995 ). A critical appraisal of combined stomatal‐photosynthesis model for C 3 plants. Plant, Cell & Environment, 339 – 355.
dc.identifier.citedreferenceLian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., Ciais, P., McVicar, T. R., Peng, S., Ottlé, C., Yang, H., Yang, Y., Zhang, Y., & Wang, T. ( 2018 ). Partitioning global land evapotranspiration using cmip5 models constrained by observations. Nature Climate Change, 8 ( 7 ), 640.
dc.identifier.citedreferenceLin, M., Horowitz, L. W., Payton, R., Fiore, A. M., & Tonnesen, G. ( 2017 ). US surface ozone trends and extremes from 1980 to 2014: Quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmospheric Chemistry and Physics, 17 ( 4 ), 2943 – 2970.
dc.identifier.citedreferenceLin, M., Malyshev, S., Shevliakova, E., Paulot, F., Horowitz, L. W., Fares, S., Mikkelsen, T. N., & Zhang, L. ( 2019 ). Sensitivity of ozone dry deposition to ecosystem‐atmosphere interactions: A critical appraisal of observations and simulations. Global Biogeochemical Cycles, 33, 1264 – 1288. https://doi.org/10.1029/2018GB006157
dc.identifier.citedreferenceLin, J.‐T., Youn, D., Liang, X.‐Z., & Wuebbles, D. J. ( 2008 ). Global model simulation of summertime us ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions. Atmospheric Environment, 42 ( 36 ), 8470 – 8483.
dc.identifier.citedreferenceLoubet, B., Cellier, P., Milford, C., & Sutton, M. A. ( 2006 ). A coupled dispersion and exchange model for short‐range dry deposition of atmospheric ammonia. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 132 ( 618 ), 1733 – 1763.
dc.identifier.citedreferenceLuhar, A. K., Galbally, I. E., Woodhouse, M. T., & Thatcher, M. ( 2017 ). An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate‐chemistry model. Atmospheric Chemistry and Physics, 17 ( 5 ), 3749 – 3767.
dc.identifier.citedreferenceMartino, M., Lézé, B., Baker, A. R., & Liss, P. S. ( 2012 ). Chemical controls on ozone deposition to water. Geophysical Research Letters, 39, 39 – 43. https://doi.org/10.1029/2011GL050282
dc.identifier.citedreferenceMassman, W. J. ( 2004 ). Toward an ozone standard to protect vegetation based on effective dose: A review of deposition resistances and a possible metric. Atmospheric Environment, 38 ( 15 ), 2323 – 2337.
dc.identifier.citedreferenceMatichuk, R., Tonnesen, G., Luecken, D., Gilliam, R., Napelenok, S. L., Baker, K. R., Schwede, D., Murphy, B., Helmig, D., Lyman, S. N., & Roselle, S. ( 2017 ). Evaluation of the community multiscale air quality model for simulating winter ozone formation in the Uinta Basin. Journal of Geophysical Research: Atmospheres, 122, 13,545 – 13,572. https://doi.org/10.1002/2017JD027057
dc.identifier.citedreferenceMeyers, T. P., Finkelstein, P., Clarke, J., Ellestad, T. G., & Sims, P. F. ( 1998 ). A multilayer model for inferring dry deposition using standard meteorological measurements. Journal of Geophysical Research, 103 ( D17 ), 22“645 – 22,661.
dc.identifier.citedreferenceMilly, P. C. D., Malyshev, S. L., Shevliakova, E., Dunne, K. A., Findell, K. L., Gleeson, T., Liang, Z., Phillipps, P., Stouffer, R. J., & Swenson, S. ( 2014 ). An enhanced model of land water and energy for global hydrologic and earth‐system studies. Journal of Hydrometeorology, 15 ( 5 ), 1739 – 1761.
dc.identifier.citedreferenceMunger, J. William, Wofsy, S. C., Bakwin, P. S., Fan, S.‐M., Goulden, M. L., Daube, B. C., Goldstein, A. H., Moore, K. E., & Fitzjarrald, D. R. ( 1996 ). Atmospheric deposition of reactive nitrogen oxides and ozone in a temperate deciduous forest and a subarctic woodland: 1. Measurements and mechanisms. Journal of Geophysical Research, 101 ( D7 ), 12,639 – 12,657.
dc.identifier.citedreferenceNaik, V., Horowitz, L. W., Fiore, A. M., Ginoux, P., Mao, J., Aghedo, A. M., & Levy H. ( 2013 ). Impact of preindustrial to present‐day changes in short‐lived pollutant emissions on atmospheric composition and climate forcing. Journal of Geophysical Research: Atmospheres, 118, 8086 – 8110. https://doi.org/10.1002/jgrd.50608
dc.identifier.citedreferenceNeirynck, J., & Verstraeten, A. ( 2018 ). Variability of ozone deposition velocity over a mixed suburban temperate forest. Frontiers in Environmental Science, 6, 82.
dc.identifier.citedreferenceOlson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, GeorgeV. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. ( 2001 ). Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51 ( 11 ), 933 – 938.
dc.identifier.citedreferencePadro, J. ( 1993 ). Seasonal contrasts in modelled and observed dry deposition velocities of O 3, SO 2 and NO 2 over three surfaces. Atmospheric Environment, 27 ( 6 ), 807 – 814.
dc.identifier.citedreferencePadro, J., Neumann, H. H., & den Hartog, G. ( 1992 ). Modelled and observed dry deposition velocity of ozone above a deciduous forest in the winter. Atmospheric Environment, 26 ( 5 ), 775 – 784.
dc.identifier.citedreferencePaulot, F., Ginoux, P., Cooke, W. F., Donner, L. J., Fan, S., Lin, M. Y., Mao, J., Naik, V., & Horowitz, L. W. ( 2016 ). Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: Implications for present and future nitrate optical depth. Atmospheric Chemistry and Physics, 16 ( 3 ), 1459 – 1477.
dc.identifier.citedreferencePaulot, F., Malyshev, S., Nguyen, T., Crounse, J. D., Shevliakova, E., & Horowitz, L. W. ( 2018 ). Representing sub‐grid scale variations in nitrogen deposition associated with land use in a global earth system model: Implications for present and future nitrogen deposition fluxes over North America. Atmospheric Chemistry and Physics Discussions, 2018, 1 – 26.
dc.identifier.citedreferencePleijel, H., Karlsson, G. P., Danielsson, H., & Sellden, G. ( 1995 ). Surface wetness enhances ozone deposition to a pasture canopy. Atmospheric Environment, 29 ( 22 ), 3391 – 3393.
dc.identifier.citedreferencePleim, J., & Ran, L. ( 2011 ). Surface flux modeling for air quality applications. Atmosphere, 2 ( 3 ), 271 – 302.
dc.identifier.citedreferencePotier, E., Loubet, B., Durand, B., Flura, D., Bourdat‐Deschamps, M., Ciuraru, R., & Ogée, J. ( 2017 ). Chemical reaction rates of ozone in water infusions of wheat, beech, oak and pine leaves of different ages. Atmospheric Environment, 151, 176 – 187.
dc.identifier.citedreferencePotier, E., Ogee, J., Jouanguy, J., Lamaud, E., Stella, P., Personne, E., Durand, B., Mascher, N., & Loubet, B. ( 2015 ). Multilayer modelling of ozone fluxes on winter wheat reveals large deposition on wet senescing leaves. Agricultural and Forest Meteorology, 211‐212, 58 – 71.
dc.identifier.citedreferenceRannik, Ü., Altimir, N., Mammarella, I., BÃďck, J., Rinne, J., Ruuskanen, T. M., Hari, P., Vesala, T., & Kulmala, M. ( 2012 ). Ozone deposition into a boreal forest over a decade of observations: Evaluating deposition partitioning and driving variables. Atmospheric Chemistry and Physics, 12 ( 24 ), 12,165 – 12,182.
dc.identifier.citedreferenceRasmussen, D. J., Fiore, A. M., Naik, V., Horowitz, L. W., McGinnis, S. J., & Schultz, M. G. ( 2012 ). Surface ozone‐temperature relationships in the eastern US: A monthly climatology for evaluating chemistry‐climate models. Atmospheric Environment, 47, 142 – 153.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.