Show simple item record

Monodispersed β‐Glycerophosphate‐Decorated Bioactive Glass Nanoparticles Reinforce Osteogenic Differentiation of Adipose Stem Cells and Bone Regeneration In Vivo

dc.contributor.authorGuo, Yi
dc.contributor.authorXue, Yumeng
dc.contributor.authorGe, Juan
dc.contributor.authorLei, Bo
dc.date.accessioned2020-05-05T19:37:09Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-05-05T19:37:09Z
dc.date.issued2020-04
dc.identifier.citationGuo, Yi; Xue, Yumeng; Ge, Juan; Lei, Bo (2020). "Monodispersed β‐Glycerophosphate‐Decorated Bioactive Glass Nanoparticles Reinforce Osteogenic Differentiation of Adipose Stem Cells and Bone Regeneration In Vivo." Particle & Particle Systems Characterization 37(4): n/a-n/a.
dc.identifier.issn0934-0866
dc.identifier.issn1521-4117
dc.identifier.urihttps://hdl.handle.net/2027.42/154977
dc.description.abstractDesign and development of highly bioactive nanoscale biomaterials with enhanced osteogenic differentiation on adipose stem cells is rather important for bone regeneration and attracting much attention. Herein, monodispersed glycerophosphate‐decorated bioactive glass nanoparticles (BGN@GP) are designed and their effect is investigated on the osteogenic differentiation of adipose mesenchymal stem cells (ADMSCs) and in vivo bone regeneration. The surface‐modified BGN@GP can be efficiently taken by ADMSCs and shows negligible cytotoxicity. The in vitro results reveal that BGN@GP significantly enhances the alkaline phosphatase activity and calcium biominerialization of ADMSCs either under normal or osteoinductive medium as compared to BGNs. Further studies find that the osteogenic genes and proteins including Runx2 and Bsp in ADMSCs are significantly improved by BGN@GP even under normal culture medium. The in vivo animal experiment confirms that BGN@GP significantly promotes the new bone formation in a rat skull defect model. This study suggests that bioactive small molecule decorating is an efficient strategy to improve the osteogenesis capacity of inorganic ceramics nanomaterials.This paper reports that beta‐glycerophosphate‐functionalized bioactive glass nanoparticles (BGN@GP) could efficiently enhance the uptake of adipose‐derived stem cells (ADSCs) and improve the osteogenic differentiation of ADSCs and reinforce the in vivo bone regeneration, suggesting that BGN@GP is a promising biomaterial for bone tissue repair and regeneration.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersurface modification
dc.subject.otheradipose stem cells
dc.subject.otherbioactive biomaterials
dc.subject.otherglass nanoparticles
dc.subject.otherosteogenic differentiation
dc.titleMonodispersed β‐Glycerophosphate‐Decorated Bioactive Glass Nanoparticles Reinforce Osteogenic Differentiation of Adipose Stem Cells and Bone Regeneration In Vivo
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154977/1/ppsc201900462.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154977/2/ppsc201900462-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154977/3/ppsc201900462_am.pdf
dc.identifier.doi10.1002/ppsc.201900462
dc.identifier.sourceParticle & Particle Systems Characterization
dc.identifier.citedreferenceQ. Chen, R. P. Garcia, J. Munoz, U. P. de Larraya, N. Garmendia, Q. Q. Yao, A. R. Boccaccini, ACS Appl. Mater. Interfaces 2015, 7, 24715.
dc.identifier.citedreferenceA. Singh, J. A. Zhan, Z. Y. Ye, J. H. Elisseeff, Adv. Funct. Mater. 2013, 23, 575.
dc.identifier.citedreferenceB. Levi, M. T. Longaker, Stem Cells 2011, 29, 576.
dc.identifier.citedreferenceS. Q. Yi, M. Yu, S. Yang, R. J. Miron, Y. F. Zhang, Stem Cells 2017, 35, 386.
dc.identifier.citedreferenceY. L. Zhou, L. Z. Zhang, W. X. Zhao, Y. F. Wu, C. L. Zhu, Y. M. Yang, Biomaterials 2013, 34, 8269.
dc.identifier.citedreferenceM. M. Beloti, R. F. Abuna, F. S. de Oliveira, R. B. Kato, A. L. Rosa, FASEB J. 2013, 27, 1146.3.
dc.identifier.citedreferenceZ. T. Chen, S. W. Han, M. C. Shi, G. Q. Liu, Z. F. Chen, J. Chang, C. T. Wu, Y. Xiao, Appl. Mater. Today 2018, 10, 184.
dc.identifier.citedreferenceA. K. Gaharwar, S. M. Mihaila, A. Swami, A. Patel, S. Sant, R. L. Reis, A. P. Marques, M. E. Gomes, A. Khademhosseini, Adv. Mater. 2013, 25, 3329.
dc.identifier.citedreferenceY. Li, C. Liu, Nanoscale 2017, 9, 4862.
dc.identifier.citedreferenceD. D. Dean, Z. Schwartz, L. Bonewald, O. E. Muniz, D. S. Howell, B. D. Boyan, J. Bone Miner. Res. 1993, 8, S241.
dc.identifier.citedreferenceM. Chen, F. Zhao, Y. Li, M. Wang, X. Chen, B. Lei, Mater. Sci. Eng., C. 2020, 106, 110153.
dc.identifier.citedreferenceY. Xue, W. Niu, M. Wang, M. Chen, Y. Guo, B. Lei. ACS Nano 2020, 14, 442.
dc.identifier.citedreferenceL. Shang, K. Nienhaus, G. U. Nienhaus, J. Nanobiotechnol. 2014, 12, 1477.
dc.identifier.citedreferenceC. Yang, X. Y. Wang, B. Ma, H. B. Zhu, Z. G. Huan, N. Ma, C. T. Wu, J. Chang, ACS Appl. Mater. Interfaces 2017, 9, 5757.
dc.identifier.citedreferenceZ. T. Chen, C. T. Wu, W. Y. Gu, T. Klein, R. Crawford, Y. Xiao, Biomaterials 2014, 35, 1507.
dc.identifier.citedreferenceJ. R. Jones, Acta Biomater. 2013, 9, 4457.
dc.identifier.citedreferenceY. Xi, Y. Guo, M. Wang, J. Ge, Y. Liu, W. Niu, M. Chen, Y. Xue, D. D. Winston, W. Dai, B. Lei, C. Lin, Chem. Eng. J. 2020, 383, 123078.
dc.identifier.citedreferenceC. T. Wu, Y. H. Zhou, W. Fan, P. P. Han, J. Chang, J. Yuen, M. L. Zhang, Y. Xiao, Biomaterials 2012, 33, 2076.
dc.identifier.citedreferenceW. Niu, Y. Guo, Y. M. Xue, M. Chen, M. Wang, W. Cheng, B. Lei, Part. Part. Syst. Charact. 2019, 36, 201800087.
dc.identifier.citedreferenceY. M. Xue, Z. J. Zhang, W. Niu, M. Chen, M. Wang, Y. Guo, C. Mao, C. Lin, B. Lei, Part. Part. Syst. Charact. 2019, 36, 201800507.
dc.identifier.citedreferenceL. Zhou, Y. W. Xi, Y. M. Xue, M. Wang, Y. L. Liu, Y. Guo, B. Lei, Adv. Funct. Mater. 2019, 29, 1806883.
dc.identifier.citedreferenceQ. F. Dang, K. Liu, Z. Z. Zhang, C. S. Liu, X. Liu, Y. Xin, X. Y. Cheng, T. Xu, D. S. Cha, B. Fan, Carbohydr. Polym. 2017, 167, 145.
dc.identifier.citedreferenceS. Kim, S. K. Nishimoto, J. D. Bumgardner, W. O. Haggard, M. W. Gaber, Y. Z. Yang, Biomaterials 2010, 31, 4157.
dc.identifier.citedreferenceA. Hoppe, N. S. Guldal, A. R. Boccaccini, Biomaterials 2011, 32, 2757.
dc.identifier.citedreferenceR. J. Kroeze, M. Knippenberg, M. N. Helder, Adipose deriv. stem cells: methods protoc. 2011, 702, 233.
dc.identifier.citedreferenceF. Langenbach, J. Handschel, Stem Cell Res. Ther. 2013, 4, scrt328.
dc.identifier.citedreferenceR. Langer, D. A. Tirrell, Nature 2004, 428, 487.
dc.identifier.citedreferenceA. Khademhosseini, R. Langer, J. Borenstein, J. P. Vacanti, Proc. Natl. Acad. Sci. USA 2006, 103, 2480.
dc.identifier.citedreferenceD. Tang, R. S. Tare, L. Y. Yang, D. F. Williams, K. L. Ou, R. O. C. Oreffo, Biomaterials 2016, 83, 363.
dc.identifier.citedreferenceG. P. Fadini, S. Ciciliot, M. Albiero, Stem Cells 2017, 35, 106.
dc.identifier.citedreferenceS. V. Dorozhkin, Biomaterials 2010, 31, 1465.
dc.identifier.citedreferenceD. Marolt, M. Knezevic, G. V. Novakovic, Stem Cell Res. Ther. 2010, 1, 10.
dc.identifier.citedreferenceM. Yu, Y. Du, Y. Han, B. Lei, Adv. Funct. Mater. 2019, 30, 1906013.
dc.identifier.citedreferenceW. K. Ramp, K. K. Kaysinger, N. C. Nicholson, J. Bone Miner. Res. 1993, 8, S294.
dc.identifier.citedreferenceJ. S. Fernandes, P. Gentile, R. A. Pires, R. L. Reis, P. V. Hatton, Acta Biomater. 2017, 59, 2.
dc.identifier.citedreferenceA. A. El‐Rashidy, J. A. Roether, L. Harhaus, U. Kneser, A. R. Boccaccini, Acta Biomater. 2017, 62, 1.
dc.identifier.citedreferenceL. C. Gerhardt, A. R. Boccaccini, Materials 2010, 3, 3867.
dc.identifier.citedreferenceC. M. Madl, S. C. Heilshorn, H. M. Blau, Nature 2018, 557, 335.
dc.identifier.citedreferenceS. Bose, M. Roy, A. Bandyopadhyay, Trends Biotechnol. 2012, 30, 546.
dc.identifier.citedreferenceY. Guo, Y. M. Xue, W. Niu, M. Chen, M. Wang, P. X. Ma, B. Lei, Part. Part. Syst. Charact. 2018, 35, 1800087.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.