Show simple item record

Correct-By-Construction Fault-Tolerant Control

dc.contributor.authorYang, Liren
dc.date.accessioned2020-05-08T14:31:42Z
dc.date.availableNO_RESTRICTION
dc.date.available2020-05-08T14:31:42Z
dc.date.issued2020
dc.date.submitted2020
dc.identifier.urihttps://hdl.handle.net/2027.42/155031
dc.description.abstractCorrect-by-construction control synthesis methods refer to a collection of model-based techniques to algorithmically generate controllers/strategies that make the systems satisfy some formal specifications. Such techniques attract much attention as they provide formal guarantees on the correctness of cyber-physical systems, where corner cases may arise due to the interaction among different modules. The controllers synthesized through such methods, however, may still malfunction due to faults, such as physical component failures and unexpected operating conditions, which lead to a sudden change of the system model. In these cases, we want to guarantee that the performance of the faulty system degrades gracefully, and hence achieve fault tolerance. This thesis is about 1) incorporating fault detection and detectability analysis algorithms in correct-by-construction control synthesis, 2) formalizing the graceful degradation specification for fault tolerant systems with temporal logic, and 3) developing algorithms to synthesize correct-by-construction controllers that achieve such graceful degradation, with possible delay in the fault detection. In particular, two sets of approaches from the temporal logic planning domain, i.e., abstraction-based synthesis and optimization-based path planning, are considered. First, for abstraction-based approaches, we propose a recursive algorithm to reduce the fault tolerant controller synthesis problem into multiple small synthesis problems with simpler specifications. Such recursive reduction leverages the structure of the fault propagation and hence avoids the high complexity of solving the problem monolithically as one general temporal logic game. Furthermore, by exploring the structural properties in the specifications, we show that, even when the fault is detected with delay, the problem can be solved by a similar recursive algorithm without constructing the belief space. Secondly, optimization-based path planning is considered. The proposed approach leverages the recently developed temporal logic encodings and state-of-art mixed integer programming (MIP) solvers. The novelty of this work is to enhance the open-loop strategy obtained through solving the MIP so that it can react contingently to faults and disturbance. Finally, the control synthesis techniques developed for discrete state systems is shown to be applicable to continuous states systems. This is demonstrated by fuel cell thermal management application. Particularly, to apply the abstraction-based synthesis methods to complex systems such as the fuel cell thermal management system, structural properties (e.g., mixed monotonicity) of the system are explored and leveraged to ease abstraction computation, and techniques are developed to improve the scalability of synthesis process whenever the system has a large number of control actions.
dc.language.isoen_US
dc.subjectControl theory
dc.subjectHybrid systems
dc.subjectFormal methods
dc.subjectCorrect-by-construction control synthesis
dc.subjectFault-tolerant control
dc.subjectfuel cell thermal management
dc.titleCorrect-By-Construction Fault-Tolerant Control
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering: Systems
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberOzay, Necmiye
dc.contributor.committeememberSun, Jing
dc.contributor.committeememberGrizzle, Jessy W
dc.contributor.committeememberLafortune, Stephane
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155031/1/yliren_1.pdf
dc.identifier.orcid0000-0002-7677-8543
dc.identifier.name-orcidYang, Liren; 0000-0002-7677-8543en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.