Show simple item record

Contributions to the Development of Entropy-Stable Schemes for Compressible Flows

dc.contributor.authorGouasmi, Ayoub
dc.date.accessioned2020-05-08T14:40:05Z
dc.date.availableWITHHELD_24_MONTHS
dc.date.available2020-05-08T14:40:05Z
dc.date.issued2020
dc.date.submitted2020
dc.identifier.urihttps://hdl.handle.net/2027.42/155304
dc.description.abstractEntropy-Stable (ES) schemes have gathered considerable attention over the last decade, especially in the context of under-resolved simulations of compressible turbulent flows, where achieving both high-order accuracy and robustness is difficult. ES schemes provide stability in a nonlinear and integral sense: the total entropy of the discrete solution can be made non-decreasing, in agreement with the second principle of thermodynamics. Additionally, the amount of entropy produced by the scheme is known and can be modified, making room for analysis and improvements. This thesis delves into some of the challenges currently limiting their use in practice. The current state of the art solves the compressible Navier-Stokes equations for a single-component perfect gas in chemical and thermal equilibrium. This model is inappropriate in aerospace engineering applications such as hypersonics and combustion, which typically involve chemically reacting gas mixtures far from equilibrium. As a first step towards enabling their use for these applications, we formulated ES schemes for the multicomponent compressible Euler equations. Special care had to be taken as we found out that the theoretical foundations of ES schemes begin to crumble in the limit of vanishing partial densities. The realization that ES schemes can only go as far as their theory led us to review some of it. A fundamental result supporting the development of limiting strategies for high-order methods is the minimum entropy principle for the compressible Euler equations. It states that the specific entropy of the physically relevant weak solution does not decrease. We proved that the same result holds for the specific entropy of the gas mixture in the multicomponent case. While entropy-stability is a valuable property, it does not imply a well-behaved solution. One must recall that the second principle is a prescription on the correct behavior of a system at the global level only. To better understand how ES schemes may or may not improve the quality of the numerical solution, we revisited two classical problems encountered in the development of shock-capturing techniques. First, we studied the receding flow problem, which is a simple setup used to study the anomalous temperature rise, termed "overheating", typically observed in shock reflection and shock interaction calculations. Previous studies showed that the anomaly can be cured if conservation of entropy is enforced, but at the considerable price of total energy conservation. Entropy-Conservative (EC) schemes, a particular instance of ES schemes, can achieve both simultaneously and therefore appeared as a potential solution. We showed that while the overheating is correlated to entropy production, entropy conservation does not necessarily prevent it. Second, we studied the behavior of ES schemes in the low Mach number regime, where shock-capturing schemes are known to suffer from severe accuracy degradation issues. A classic remedy to this problem is the flux-preconditioning technique, which consists in modifying artificial dissipation terms to enforce consistent low Mach behavior. We showed that ES schemes suffer from the same issues and that the flux-preconditioning technique can improve their behavior without interfering with entropy-stability. Furthermore, we demonstrated analytically that these issues stem from an acoustic entropy production field which scales improperly with the Mach number, generating spatial fluctuations that are inconsistent with the equations. An important outgrowth of this effort is the discovery that skew-symmetric dissipation operators can alter the way entropy is produced or conserved locally.
dc.language.isoen_US
dc.subjectEntropy-Stable Schemes
dc.subjectTime integration
dc.subjectCompressible flows
dc.subjectLow Mach number regime
dc.titleContributions to the Development of Entropy-Stable Schemes for Compressible Flows
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAerospace Engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberDuraisamy, Karthik
dc.contributor.committeememberKarni, Smadar
dc.contributor.committeememberMurman, Scott
dc.contributor.committeememberRoe, Philip L
dc.contributor.committeememberTadmor, Eitan
dc.subject.hlbsecondlevelAerospace Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155304/1/gouasmia_1.pdf
dc.identifier.orcid0000-0003-0647-6723
dc.identifier.name-orcidGouasmi, Ayoub; 0000-0003-0647-6723en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.