Show simple item record

Therapeutic potential of targeting IL‐17 and IL‐23 in sepsis

dc.contributor.authorBosmann, Markus
dc.contributor.authorWard, Peter A
dc.date.accessioned2020-06-03T15:22:13Z
dc.date.available2020-06-03T15:22:13Z
dc.date.issued2012-12
dc.identifier.citationBosmann, Markus; Ward, Peter A (2012). "Therapeutic potential of targeting IL‐17 and IL‐23 in sepsis." Clinical and Translational Medicine 1(1): 1-5.
dc.identifier.issn2001-1326
dc.identifier.issn2001-1326
dc.identifier.urihttps://hdl.handle.net/2027.42/155453
dc.description.abstractSevere sepsis is a major concern of public health in industrialized countries. It is estimated that in the United States 200,000‐400,000 cases occur annually and resulting in an extensive burden for the health care systems. To date, no FDA‐approved pharmacologic agents for the treatment or prevention of human sepsis are available. The current modalities of therapy in sepsis include the standard arsenal of supportive interventions in critical care medicine and pharmacotherapy, with use of antibiotics and catecholamines. Despite such efforts, the mortality rates of sepsis have remained around 30‐50 %. Extensive scientific studies have utilized animal models of disease and aimed for a better understanding of the pathophysiologic mechanisms during sepsis. Members of the IL‐17 family of cytokines, as well as the functionally related IL‐23, have been identified as new players in the molecular events during sepsis. Strategies for targeting these mediators with neutralizing antibodies during experimental sepsis in rodents have demonstrated efficacy, resulting in improved survival outcomes. Currently, it is not clear whether such findings can be translated to human sepsis. This review highlights the current knowledge on the biology of IL‐17 isoforms and IL‐23 as well as potential applications to clinical medicine.
dc.publisherSpringer Berlin Heidelberg
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCecal Ligation
dc.subject.otherTh17 Cell Differentiation
dc.subject.otherPolymicrobial Sepsis
dc.subject.otherUstekinumab
dc.subject.otheriNKT Cell
dc.titleTherapeutic potential of targeting IL‐17 and IL‐23 in sepsis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155453/1/ctm22001132614.pdf
dc.identifier.doi10.1186/2001-1326-1-4
dc.identifier.sourceClinical and Translational Medicine
dc.identifier.citedreferenceLavoie PM, Qing HA, Jolette E, Whalen M, Nuyt AM, Audibert F, Speert DP, Lacaze‐Masmonteil T, Soudeyns H, Kollmann TR: Profound Lack of Interleukin (IL)‐12/IL‐23p40 in Neonates Born Early in Gestation Is Associated with an Increased Risk of Sepsis. J Infect Dis 2010, 202: 1754 – 1763.
dc.identifier.citedreferenceMcGeachy MJ, Bak‐Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ: TGF‐beta and IL‐6 drive the production of IL‐17 and IL‐10 by T cells and restrain T(H)‐17 cell‐mediated pathology. Nat Immunol 2007, 8: 1390 – 1397.
dc.identifier.citedreferenceIvanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL‐17+ T helper cells. Cell 2006, 126: 1121 – 1133.
dc.identifier.citedreferenceLiu XK, Clements JL, Gaffen SL: Signaling through the murine T cell receptor induces IL‐17 production in the absence of costimulation, IL‐23 or dendritic cells. Mol Cells 2005, 20: 339 – 347.
dc.identifier.citedreferenceFossiez F, Djossou O, Chomarat P, Flores‐Romo L, Ait‐Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, Blanchard D, Gaillard C, Das Mahapatra B, Rouvier E, Golstein P, Banchereau J, Lebecque ST: cell interleukin‐17 induces stromal cells to produce proinflammatory and hematopoietic cytokines.[see comment]. J Exp Med 1996, 183: 2593 – 2603.
dc.identifier.citedreferenceWilson RH, Whitehead GS, Nakano H, Free ME, Kolls JK, Cook DN: Allergic sensitization through the airway primes Th17‐dependent neutrophilia and airway hyperresponsiveness. Am J Respir Crit Care Med 2009, 180: 720 – 730.
dc.identifier.citedreferenceRittirsch D, Flierl MA, Nadeau BA, Day DE, Huber‐Lang M, Mackay CR, Zetoune FS, Gerard NP, Cianflone K, Kohl J, Gerard C, Sarma JV, Ward PA: Functional roles for C5a receptors in sepsis. Nat Med 2008, 14: 551 – 557.
dc.identifier.citedreferenceCzermak BJ, Sarma V, Pierson CL, Warner RL, Huber‐Lang M, Bless NM, Schmal H, Friedl HP, Ward PA: Protective effects of C5a blockade in sepsis. Nat Med 1999, 5: 788 – 792.
dc.identifier.citedreferenceBelladonna ML, Vacca C, Volpi C, Giampietri A, Fioretti MC, Puccetti P, Grohmann U, Campanile F: IL‐23 neutralization protects mice from Gram‐negative endotoxic shock. Cytokine 2006, 34: 161 – 169.
dc.identifier.citedreferenceO’Dwyer MJ, Mankan AK, White M, Lawless MW, Stordeur P, O’Connell B, Kelleher DP, McManus R, Ryan T: The human response to infection is associated with distinct patterns of interleukin 23 and interleukin 27 expression. Intensive Care Med 2008, 34: 683 – 691.
dc.identifier.citedreferenceVanden Eijnden S, Goriely S, De Wit D, Goldman M, Willems F: Preferential production of the IL‐12(p40)/IL‐23(p19) heterodimer by dendritic cells from human newborns. Eur J Immunol 2006, 36: 21 – 26.
dc.identifier.citedreferenceChung DR, Kasper DL, Panzo RJ, Chitnis T, Grusby MJ, Sayegh MH, Tzianabos AO: CD4+ T cells mediate abscess formation in intra‐abdominal sepsis by an IL‐17‐dependent mechanism. J Immunol 2003, 170: 1958 – 1963.
dc.identifier.citedreferenceShibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y: Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL‐17 production. J Immunology 2007, 178: 4466 – 4472.
dc.identifier.citedreferenceAtefi G, Zetoune FS, Herron TJ, Jalife J, Bosmann M, Al‐Aref R, Sarma JV, Ward PA: Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB J 2011, 25: 2500 – 2508.
dc.identifier.citedreferenceOgiku M, Kono H, Hara M, Tsuchiya M, Fujii H: Interleukin‐17A Plays a Pivotal Role in Polymicrobial Sepsis According to Studies Using IL‐17A Knockout Mice. J Surg Res 2012, 174: 142 – 149.
dc.identifier.citedreferencePuel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M, Gumbleton M, Toulon A, Bodemer C, El‐Baghdadi J, Whitters M, Paradis T, Brooks J, Collins M, Wolfman NM, Al‐Muhsen S, Galicchio M, Abel L, Picard C, Casanova JL: Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin‐17 immunity. Science 2011, 332: 65 – 68.
dc.identifier.citedreferenceMilner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC: Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper‐IgE syndrome. Nature 2008, 452: 773 – 776.
dc.identifier.citedreferenceRueda B, Orozco G, Raya E, Fernandez‐Sueiro JL, Mulero J, Blanco FJ, Vilches C, Gonzalez‐Gay MA, Martin J: The IL23R Arg381Gln non‐synonymous polymorphism confers susceptibility to ankylosing spondylitis. Ann Rheum Dis 2008, 67: 1451 – 1454.
dc.identifier.citedreferenceParadowska‐Gorycka A, Grzybowska‐Kowalczyk A, Wojtecka‐Lukasik E, Maslinski S: IL‐23 in the pathogenesis of rheumatoid arthritis. Scand J Immunol 2010, 71: 134 – 145.
dc.identifier.citedreferenceGriffiths CE, Strober BE, van de Kerkhof P, Ho V, Fidelus‐Gort R, Yeilding N, Guzzo C, Xia Y, Zhou B, Li S, Dooley LT, Goldstein NH, Menter A: Comparison of ustekinumab and etanercept for moderate‐to‐severe psoriasis. N Engl J Med 2010, 362: 118 – 128.
dc.identifier.citedreferenceYao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK: Herpesvirus Saimiri encodes a new cytokine, IL‐17, which binds to a novel cytokine receptor. Immunity 1995, 3: 811 – 821.
dc.identifier.citedreferenceYao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ: Human IL‐17: a novel cytokine derived from T cells. J Immunol 1995, 155: 5483 – 5486.
dc.identifier.citedreferenceRouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P: CTLA‐8, cloned from an activated T cell, bearing AU‐rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 1993, 150: 5445 – 5456.
dc.identifier.citedreferenceIwakura Y, Ishigame H, Saijo S, Nakae S: Functional specialization of interleukin‐17 family members. Immunity 2011, 34: 149 – 162.
dc.identifier.citedreferenceChang SH, Dong C: A novel heterodimeric cytokine consisting of IL‐17 and IL‐17 F regulates inflammatory responses. Cell Res 2007, 17: 435 – 440.
dc.identifier.citedreferenceBosmann M, Sarma JV, Atefi G, Zetoune FS, Ward PA: Evidence for anti‐inflammatory effects of C5a on the innate IL‐17A/IL‐23 axis. FASEB J 2012, 26: 1640 – 1651.
dc.identifier.citedreferenceCua DJ, Tato CM: Innate IL‐17‐producing cells: the sentinels of the immune system. Nat Rev Immunol 2010, 10: 479 – 489.
dc.identifier.citedreferenceFlierl MA, Rittirsch D, Gao H, Hoesel LM, Nadeau BA, Day DE, Zetoune FS, Sarma JV, Huber‐Lang MS, Ferrara JL, Ward PA: Adverse functions of IL‐17A in experimental sepsis. FASEB J 2008, 22: 2198 – 2205.
dc.identifier.citedreferenceBosmann M, Patel VR, Russkamp NF, Pache F, Zetoune FS, Sarma JV, Ward PA: MyD88‐dependent production of IL‐17 F is modulated by the anaphylatoxin C5a via the Akt signaling pathway. FASEB J 2011, 25: 4222 – 4232.
dc.identifier.citedreferenceGu Y, Yang J, Ouyang X, Liu W, Li H, Bromberg J, Chen SH, Mayer L, Unkeless JC, Xiong H: Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells. Eur J Immunol 2008, 38: 1807 – 1813.
dc.identifier.citedreferenceDa Silva CA, Hartl D, Liu W, Lee CG, Elias JA: TLR‐2 and IL‐17A in chitin‐induced macrophage activation and acute inflammation. J Immunol 2008, 181: 4279 – 4286.
dc.identifier.citedreferenceMurphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ: Divergent pro‐ and antiinflammatory roles for IL‐23 and IL‐12 in joint autoimmune inflammation. J ExpMed 2003, 198: 1951 – 1957.
dc.identifier.citedreferenceLangrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ: IL‐23 drives a pathogenic T cell population that induces autoimmune inflammation. J ExpMed 2005, 201: 233 – 240.
dc.identifier.citedreferenceMangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT: Transforming growth factor‐beta induces development of the T(H)17 lineage. Nature 2006, 441: 231 – 234.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.