Show simple item record

Counting niches: Abundance- by- trait patterns reveal niche partitioning in a Neotropical forest

dc.contributor.authorD’andrea, Rafael
dc.contributor.authorGuittar, John
dc.contributor.authorO’dwyer, James P.
dc.contributor.authorFigueroa, Hector
dc.contributor.authorWright, S. J.
dc.contributor.authorCondit, Richard
dc.contributor.authorOstling, Annette
dc.date.accessioned2020-06-03T15:22:20Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-06-03T15:22:20Z
dc.date.issued2020-06
dc.identifier.citationD’andrea, Rafael ; Guittar, John; O’dwyer, James P. ; Figueroa, Hector; Wright, S. J.; Condit, Richard; Ostling, Annette (2020). "Counting niches: Abundance- by- trait patterns reveal niche partitioning in a Neotropical forest." Ecology 101(6): n/a-n/a.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/155460
dc.description.abstractTropical forests challenge us to understand biodiversity, as numerous seemingly similar species persist on only a handful of shared resources. Recent ecological theory posits that biodiversity is sustained by a combination of species differences reducing interspecific competition and species similarities increasing time to competitive exclusion. Together, these mechanisms counterintuitively predict that competing species should cluster by traits, in contrast with traditional expectations of trait overdispersion. Here, we show for the first time that trees in a tropical forest exhibit a clustering pattern. In a 50- ha plot on Barro Colorado Island in Panama, species abundances exhibit clusters in two traits connected to light capture strategy, suggesting that competition for light structures community composition. Notably, we find four clusters by maximum height, quantitatively supporting the classical grouping of Neotropical woody plants into shrubs, understory, midstory, and canopy layers.
dc.publisherWiley Periodicals, Inc.
dc.publisherThe University of Chicago Press
dc.subject.othertrait- based clustering
dc.subject.otherBarro Colorado Island
dc.subject.othercommunity structure
dc.subject.othercompetition
dc.subject.otheremergent neutrality
dc.subject.otherniche differentiation
dc.subject.otherself- organized similarity
dc.subject.othertropical forests
dc.titleCounting niches: Abundance- by- trait patterns reveal niche partitioning in a Neotropical forest
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155460/1/ecy3019.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155460/2/ecy3019-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155460/3/ecy3019_am.pdf
dc.identifier.doi10.1002/ecy.3019
dc.identifier.sourceEcology
dc.identifier.citedreferenceRosindell, J., S. P. Hubbell, F. He, L. J. Harmon, and R. S. Etienne. 2012. The case for ecological neutral theory. Trends in Ecology & Evolution 27: 204 - 209.
dc.identifier.citedreferenceHubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Page monographs in population biology. Princeton University Press, Princeton, New Jersey, USA.
dc.identifier.citedreferenceHubbell, S. P., et al. 1999. Light- gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest. Science 283: 554 - 557.
dc.identifier.citedreferenceKohyama, T. 1993. Size- structured tree populations in gap- dynamic forest- the forest architecture hypothesis for the stable coexistence of species. Journal of Ecology 81: 131 - 143.
dc.identifier.citedreferenceKohyama, T., and T. Takada. 2009. The stratification theory for plant coexistence promoted by one- sided competition. Journal of Ecology 97: 463 - 471.
dc.identifier.citedreferenceKraft, N. J. B., and D. D. Ackerly. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80: 401 - 422.
dc.identifier.citedreferenceKraft, N. J. B., R. Valencia, and D. D. Ackerly. 2008. Functional traits and niche- based tree community assembly in an Amazonian forest. Science 322 ( 5901 ): 580 - 582.
dc.identifier.citedreferenceKunstler, G., et al. 2016. Plant functional traits have globally consistent effects on competition. Nature 529: 1 - 15.
dc.identifier.citedreferenceLake, J. K., and A. M. Ostling. 2009. Comment on - Functional traits and niche- based tree community assembly in an Amazonian forest.- Science 324: 1015; author reply 1015.
dc.identifier.citedreferenceLeimar, O., A. Sasaki, M. Doebeli, and U. Dieckmann. 2013. Limiting similarity, species packing, and the shape of competition kernels. Journal of Theoretical Biology 339: 3 - 13.
dc.identifier.citedreferenceLevine, J. M., and D. J. Murrell. 2003. The community- level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution, and Systematics 34: 549 - 574.
dc.identifier.citedreferenceMacArthur, R. H., and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 101: 377 - 385.
dc.identifier.citedreferenceMacQueen, J. B. 1967. Some methods for classification and analysis of multivariate observations. 5th Berkeley Symposium on Mathematical Statistics and Probability 1: 281 - 297.
dc.identifier.citedreferenceMouquet, N., and M. Loreau. 2003. Community patterns in source- sink metacommunities. American Naturalist 162: 544 - 557.
dc.identifier.citedreferenceMuller- Landau, H. C. 2010. The tolerance- fecundity trade- off and the maintenance of diversity in seed size. Proceedings of the National Academy of Sciences of the United States of America 107: 4242 - 4247.
dc.identifier.citedreferenceMuller- Landau, H. C., S. J. Wright, O. Calderón, R. Condit, and M. O. Hunter. 2008. Interspecific variation in primary seed dispersal in a tropical forest. Journal of Ecology 96: 653 - 667.
dc.identifier.citedreferenceRichards, P. W. 1952. The tropical rain forest. University Press, Cambridge, UK.
dc.identifier.citedreferenceSakavara, A., G. Tsirtsis, D. L. Roelke, R. Mancy, and S. Spatharis. 2018. Lumpy species coexistence arises robustly in fluctuating resource environments. Proceedings of the National Academy of Sciences of the United States of America 115: 738 - 743
dc.identifier.citedreferenceScheffer, M., and E. H. van Nes. 2006. Self- organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the National Academy of Sciences of the United States of America 103: 6230 - 6235.
dc.identifier.citedreferenceSedio, B. E., and A. M. Ostling. 2013. How specialised must natural enemies be to facilitate coexistence among plants? Ecology Letters 16: 995 - 1003.
dc.identifier.citedreferenceSugar, C. A., and G. M. James. 2003. Finding the number of clusters in a dataset: an information- theoretic approach. Journal of the American Statistical Association 98: 750 - 763.
dc.identifier.citedreferenceTerborgh, J. 1985. The vertical component of plant species diversity in temperate and tropical forests. American Naturalist 126: 760 - 776.
dc.identifier.citedreferenceTibshirani, R., G. Walther, and T. Hastie. 2001. Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society B 63: 411 - 423.
dc.identifier.citedreferenceTilman, D. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, New Jersey, USA.
dc.identifier.citedreferenceVergnon, R., N. K. Dulvy, and R. P. Freckleton. 2009. Niches versus neutrality: uncovering the drivers of diversity in a species- rich community. Ecology Letters 12: 1079 - 1090.
dc.identifier.citedreferenceVisser, M. D., M. Bruijning, S. J. Wright, H. C. Muller- Landau, E. Jongejans, L. S. Comita, and H. de Kroon. 2016. Functional traits as predictors of vital rates across the life cycle of tropical trees. Functional Ecology 30: 168 - 180.
dc.identifier.citedreferenceVolkov, I., J. R. Banavar, M. O. Hunter, and A. Maritan. 2003. Neutral theory and relative species abundance in ecology. Nature 424: 1035 - 1037.
dc.identifier.citedreferenceWright, S. J., et al. 2010. Functional traits and the growth- mortality trade- off in tropical trees. Ecology 91: 3664 - 3674.
dc.identifier.citedreferenceYan, B., J. Zhang, Y. Liu, Z. Li, X. Huang, W. Yang, and A. Prinzing. 2012. Trait assembly of woody plants in communities across sub- alpine gradients: Identifying the role of limiting similarity. Journal of Vegetation Science 23: 698 - 708.
dc.identifier.citedreferenceYan, M., and K. Ye. 2007. Determining the number of clusters using the weighted gap statistic. Biometrics 63: 1031 - 1037.
dc.identifier.citedreferenceBarabás, G., R. D- Andrea, R. Rael, G. Meszéna, and A. M. Ostling. 2013. Emergent neutrality or hidden niches? Oikos 122: 1565 - 1572.
dc.identifier.citedreferenceChase, J. M., and M. Leibold. 2003. Ecological niches: linking classical and contemporary approaches. The University of Chicago Press, Chicago, Illinois, USA.
dc.identifier.citedreferenceChase, J. M., and J. A. Myers. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B 366: 2351 - 2363.
dc.identifier.citedreferenceCondit, R. 1998. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Berlin, Germany: Springer Science & Business Media.
dc.identifier.citedreferenceCondit, R., R. A. Chisholm, and M. O. Hunter. 2012a. Thirty years of forest census at Barro Colorado and the importance of immigration in maintaining diversity. PLoS ONE 7: 1 - 6.
dc.identifier.citedreferenceCondit, R., B. M. J. Engelbrecht, D. Pino, R. Pérez, and B. L. Turner. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences of the United States of America 110: 5064 - 5068.
dc.identifier.citedreferenceCondit, R., S. Lao, R. Perez, S. B. Dolins, R. Foster, and S. Hubbell. 2012b. Barro Colorado Forest Census Plot Data (Version 2012). http://dx.doi.org/10.5479/data.bci.20130603
dc.identifier.citedreferenceCondit, R. S., S. P. Hubbell, and R. B. Foster. 1995. Mortality rates of 205 Neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs 65: 419 - 439.
dc.identifier.citedreferenceCondit, R. S., R. Pérez, S. Aguilar, and S. Lao. 2016. Data from tree censuses and inventories in Panama. repository.si.edu/handle/10088/28866.
dc.identifier.citedreferenceD- Andrea, R., and A. M. Ostling. 2016. Challenges in linking trait patterns to niche differentiation. Oikos 125: 1369 - 1385.
dc.identifier.citedreferenceD- Andrea, R., and A. Ostling. 2017. Biodiversity maintenance may be lower under partial niche differentiation than under neutrality. Ecology 98: 3211 - 3218.
dc.identifier.citedreferenceD- Andrea, R., A. Ostling, and J. P. O- Dwyer. 2018. Translucent windows: How uncertainty in competitive interactions impacts detection of community pattern. Ecology Letters 21: 826 - 835.
dc.identifier.citedreferenceD- Andrea, R., M. Riolo, and A. M. Ostling. 2019. Generalizing clusters of similar species as a signature of coexistence under competition. PLoS Computational Biology 15: 1 - 19.
dc.identifier.citedreferenceDudoit, S., and J. Fridlyand. 2002. A prediction- based resampling method for estimating the number of clusters in a dataset. Genome Biology 3: 1 - 21.
dc.identifier.citedreferenceGötzenberger, L., et al. 2012. Ecological assembly rules in plant communities- approaches, patterns and prospects. Biological Reviews 87: 111 - 127.
dc.identifier.citedreferenceGrime, J. P. 1979. Plant strategies and vegetation processes. Page plant strategies and vegetation processes. Hoboken, NJ: John Wiley and Sons.
dc.identifier.citedreferenceHolt, R. D. 2006. Emergent neutrality. Trends in Ecology & Evolution 21: 531 - 533.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.