Show simple item record

Weight Regain in Formerly Obese Mice Hastens Development of Hepatic Steatosis Due to Impaired Adipose Tissue Function

dc.contributor.authorZamarron, Brian F.
dc.contributor.authorPorsche, Cara E.
dc.contributor.authorLuan, Danny
dc.contributor.authorLucas, Hannah R.
dc.contributor.authorMergian, Taleen A.
dc.contributor.authorMartinez‐santibanez, Gabriel
dc.contributor.authorCho, Kae Won
dc.contributor.authorDelProposto, Jennifer L.
dc.contributor.authorGeletka, Lynn M.
dc.contributor.authorMuir, Lindsey A.
dc.contributor.authorSinger, Kanakadurga
dc.contributor.authorLumeng, Carey N.
dc.date.accessioned2020-06-03T15:22:28Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-06-03T15:22:28Z
dc.date.issued2020-06
dc.identifier.citationZamarron, Brian F.; Porsche, Cara E.; Luan, Danny; Lucas, Hannah R.; Mergian, Taleen A.; Martinez‐santibanez, Gabriel ; Cho, Kae Won; DelProposto, Jennifer L.; Geletka, Lynn M.; Muir, Lindsey A.; Singer, Kanakadurga; Lumeng, Carey N. (2020). "Weight Regain in Formerly Obese Mice Hastens Development of Hepatic Steatosis Due to Impaired Adipose Tissue Function." Obesity (6): 1086-1097.
dc.identifier.issn1930-7381
dc.identifier.issn1930-739X
dc.identifier.urihttps://hdl.handle.net/2027.42/155467
dc.publisherWiley Periodicals, Inc.
dc.titleWeight Regain in Formerly Obese Mice Hastens Development of Hepatic Steatosis Due to Impaired Adipose Tissue Function
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEndocrinology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155467/1/oby22788-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155467/2/oby22788_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155467/3/oby22788.pdf
dc.identifier.doi10.1002/oby.22788
dc.identifier.sourceObesity
dc.identifier.citedreferenceMiller RS, Becker KG, Prabhu V, Cooke DW. Adipocyte gene expression is altered in formerly obese mice and as a function of diet composition. J Nutr 2008; 138: 1033 - 1038.
dc.identifier.citedreferencePower C, Thomas C. Changes in BMI, duration of overweight and obesity, and glucose metabolism: 45 years of follow- up of a birth cohort. Diabetes Care 2011; 34: 1986 - 1991.
dc.identifier.citedreferenceCancello R, Zulian A, Gentilini D, et al. Permanence of molecular features of obesity in subcutaneous adipose tissue of ex- obese subjects. Int J Obes (Lond) 2013; 37: 867 - 873.
dc.identifier.citedreferenceMagkos F, Fraterrigo G, Yoshino J, et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 2016; 23: 591 - 601.
dc.identifier.citedreferenceKratz M, Hagman DK, Kuzma JN, et al. Improvements in glycemic control after gastric bypass occur despite persistent adipose tissue inflammation. Obesity (Silver Spring) 2016; 24: 1438 - 1445.
dc.identifier.citedreferenceZamarron BF, Mergian TA, Cho KW, et al. Macrophage proliferation sustains adipose tissue inflammation in formerly obese mice. Diabetes 2017; 66: 392 - 406.
dc.identifier.citedreferenceJung DY, Ko HJ, Lichtman EI, et al. Short- term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice. Am J Physiol Endocrinol Metab 2013; 304: E964 - E976.
dc.identifier.citedreferenceSchmitz J, Evers N, Awazawa M, et al. Obesogenic memory can confer long- term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss. Mol Metab 2016; 5: 328 - 339.
dc.identifier.citedreferenceKalupahana NS, Voy BH, Saxton AM, Moustaid- Moussa N. Energy- restricted high- fat diets only partially improve markers of systemic and adipose tissue inflammation. Obesity (Silver Spring) 2011; 19: 245 - 254.
dc.identifier.citedreferenceMartinez- Santibanez G, Cho KW, Lumeng CN. Imaging white adipose tissue with confocal microscopy. Methods Enzymol 2014; 537: 17 - 30.
dc.identifier.citedreferenceLee YH, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab 2013; 18: 355 - 367.
dc.identifier.citedreferenceLee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by β3- adrenoceptor activation and high- fat feeding. Cell Metab 2012; 15: 480 - 491.
dc.identifier.citedreferenceTorti FM, Torti SV, Larrick JW, Ringold GM. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor beta. J Cell Biol 1989; 108: 1105 - 1113.
dc.identifier.citedreferenceHu Y, Bhupathiraju SN, de Koning L, Hu FB. Duration of obesity and overweight and risk of type 2 diabetes among US women. Obesity (Silver Spring) 2014; 22: 2267 - 2273.
dc.identifier.citedreferenceLotta LA, Gulati P, Day FR, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet 2017; 49: 17 - 26.
dc.identifier.citedreferenceKeophiphath M, Achard V, Henegar C, Rouault C, Clement K, Lacasa D. Macrophage- secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol 2009; 23: 11 - 24.
dc.identifier.citedreferenceGustafson B, Smith U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3- L1 preadipocytes. J Biol Chem 2006; 281: 9507 - 9516.
dc.identifier.citedreferenceBilkovski R, Schulte DM, Oberhauser F, et al. Adipose tissue macrophages inhibit adipogenesis of mesenchymal precursor cells via wnt- 5a in humans. Int J Obes (Lond) 2011; 35: 1450 - 1454.
dc.identifier.citedreferenceBing C. Is interleukin- 1β a culprit in macrophage- adipocyte crosstalk in obesity? Adipocyte 2015; 4: 149 - 152.
dc.identifier.citedreferenceGagnon A, Foster C, Landry A, Sorisky A. The role of interleukin 1β in the anti- adipogenic action of macrophages on human preadipocytes. J Endocrinol 2013; 217: 197 - 206.
dc.identifier.citedreferencePetersen RK, Jorgensen C, Rustan AC, et al. Arachidonic acid- dependent inhibition of adipocyte differentiation requires PKA activity and is associated with sustained expression of cyclooxygenases. J Lipid Res 2003; 44: 2320 - 2330.
dc.identifier.citedreferenceWeinstock A, Brown EJ, Garabedian ML, et al. Single- cell RNA sequencing of visceral adipose tissue leukocytes reveals that caloric restriction following obesity promotes the accumulation of a distinct macrophage population with features of phagocytic cells [published online July 19, 2019]. Immunometabolism 2019; 1. doi: https://doi.org/10.20900/immunometab20190008
dc.identifier.citedreferenceStrissel KJ, Stancheva Z, Miyoshi H, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007; 56: 2910 - 2918.
dc.identifier.citedreferenceSattar N, Forrest E, Preiss D. Non- alcoholic fatty liver disease. BMJ 2014; 349: g4596. doi: https://doi.org/10.1136/bmj.g4596
dc.identifier.citedreferenceBarbosa- da- Silva S, da Silva NC, Aguila MB, Mandarim- de- Lacerda CA. Liver damage is not reversed during the lean period in diet- induced weight cycling in mice. Hepatol Res 2014; 44: 450 - 459.
dc.identifier.citedreferenceClement K, Viguerie N, Poitou C, et al. Weight loss regulates inflammation- related genes in white adipose tissue of obese subjects. FASEB J 2004; 18: 1657 - 1669.
dc.identifier.citedreferenceSteckhan N, Hohmann CD, Kessler C, Dobos G, Michalsen A, Cramer H. Effects of different dietary approaches on inflammatory markers in patients with metabolic syndrome: a systematic review and meta- analysis. Nutrition 2016; 32: 338 - 348.
dc.identifier.citedreferenceFranz MJ, Boucher JL, Rutten- Ramos S, VanWormer JJ. Lifestyle weight- loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta- analysis of randomized clinical trials. J Acad Nutr Diet 2015; 115: 1447 - 1463.
dc.identifier.citedreferenceSoleymani T, Daniel S, Garvey WT. Weight maintenance: challenges, tools and strategies for primary care physicians. Obes Rev 2016; 17: 81 - 93.
dc.identifier.citedreferencePuzziferri N, Roshek TB 3rd, Mayo HG, Gallagher R, Belle SH, Livingston EH. Long- term follow- up after bariatric surgery: a systematic review. JAMA 2014; 312: 934 - 942.
dc.identifier.citedreferenceKarmali S, Brar B, Shi X, Sharma AM, de Gara C, Birch DW. Weight recidivism post- bariatric surgery: a systematic review. Obes Surg 2013; 23: 1922 - 1933.
dc.identifier.citedreferenceMackie GM, Samocha- Bonet D, Tam CS. Does weight cycling promote obesity and metabolic risk factors? Obes Res Clin Pract 2017; 11: 131 - 139.
dc.identifier.citedreferenceMehta T, Smith DL Jr, Muhammad J, Casazza K. Impact of weight cycling on risk of morbidity and mortality. Obes Rev 2014; 15: 870 - 881.
dc.identifier.citedreferenceStevens VL, Jacobs EJ, Sun J, et al. Weight cycling and mortality in a large prospective US study. Am J Epidemiol 2012; 175: 785 - 792.
dc.identifier.citedreferenceVergnaud AC, Bertrais S, Oppert JM, et al. Weight fluctuations and risk for metabolic syndrome in an adult cohort. Int J Obes (Lond) 2008; 32: 315 - 321.
dc.identifier.citedreferenceZhang H, Tamakoshi K, Yatsuya H, et al. Long- term body weight fluctuation is associated with metabolic syndrome independent of current body mass index among Japanese men. Circ J 2005; 69: 13 - 18.
dc.identifier.citedreferenceNeamat- Allah J, Barrdahl M, Husing A, et al. Weight cycling and the risk of type 2 diabetes in the EPIC- Germany cohort. Diabetologia 2015; 58: 2718 - 2725.
dc.identifier.citedreferenceSea MM, Fong WP, Huang Y, Chen ZY. Weight cycling- induced alteration in fatty acid metabolism. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1145 - R1155.
dc.identifier.citedreferenceKochan Z, Karbowska J, Swierczynski J. The effects of weight cycling on serum leptin levels and lipogenic enzyme activities in adipose tissue. J Physiol Pharmacol 2006; 57 ( Suppl 6 ): 115 - 127.
dc.identifier.citedreferenceFried SK, Hill JO, Nickel M, DiGirolamo M. Prolonged effects of fasting- refeeding on rat adipose tissue lipoprotein lipase activity: influence of caloric restriction during refeeding. J Nutr 1983; 113: 1861 - 1869.
dc.identifier.citedreferenceSchofield SE, Parkinson JR, Henley AB, Sahuri- Arisoylu M, Sanchez- Canon GJ, Bell JD. Metabolic dysfunction following weight cycling in male mice. Int J Obes (Lond) 2017; 41: 402 - 411.
dc.identifier.citedreferenceBarbosa- da- Silva S, Fraulob- Aquino JC, Lopes JR, Mandarim- de- Lacerda CA, Aguila MB. Weight cycling enhances adipose tissue inflammatory responses in male mice. PLoS One 2012; 7: e39837. doi: https://doi.org/10.1371/journal.pone.0039837
dc.identifier.citedreferenceAnderson EK, Gutierrez DA, Kennedy A, Hasty AH. Weight cycling increases T- cell accumulation in adipose tissue and impairs systemic glucose tolerance. Diabetes 2013; 62: 3180 - 3188.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.