Show simple item record

Submicron full- color LED pixels for microdisplays and micro- LED main displays

dc.contributor.authorLiu, Xianhe
dc.contributor.authorWu, Yuanpeng
dc.contributor.authorMalhotra, Yakshita
dc.contributor.authorSun, Yi
dc.contributor.authorRa, Yong‐ho
dc.contributor.authorWang, Renjie
dc.contributor.authorStevenson, Matthew
dc.contributor.authorCoe‐sullivan, Seth
dc.contributor.authorMi, Zetian
dc.date.accessioned2020-06-03T15:22:30Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-06-03T15:22:30Z
dc.date.issued2020-05
dc.identifier.citationLiu, Xianhe; Wu, Yuanpeng; Malhotra, Yakshita; Sun, Yi; Ra, Yong‐ho ; Wang, Renjie; Stevenson, Matthew; Coe‐sullivan, Seth ; Mi, Zetian (2020). "Submicron full- color LED pixels for microdisplays and micro- LED main displays." Journal of the Society for Information Display 28(5): 410-417.
dc.identifier.issn1071-0922
dc.identifier.issn1938-3657
dc.identifier.urihttps://hdl.handle.net/2027.42/155468
dc.description.abstractWe demonstrate a bottom- up approach to the construction of micro- LEDs as small as 150 nm in lateral dimension. Molecular beam epitaxy (MBE) is used to fabricate such nanostructured LEDs from InGaN, from the blue to red regions of the spectrum, providing a single material set useful for an entire RGB display.We demonstrate a bottom- up approach to the construction of micro- LEDs as small as 150 nm in lateral dimension. Molecular beam epitaxy (MBE) is used to fabricate such nanostructured LEDs from InGaN, from the blue to red regions of the spectrum, providing a single material set useful for an entire RGB display. We then consider collective effects of arrays of such LEDs.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdisplay
dc.subject.otherGaN
dc.subject.otherlight- emitting diode
dc.subject.othernanowire
dc.subject.otherquantum dot
dc.subject.otherselective area growth
dc.titleSubmicron full- color LED pixels for microdisplays and micro- LED main displays
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155468/1/jsid899_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155468/2/jsid899.pdf
dc.identifier.doi10.1002/jsid.899
dc.identifier.sourceJournal of the Society for Information Display
dc.identifier.citedreferenceBengoechea- Encabo A, Barbagini F, Fernandez- Garrido S, et al. Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks. Cryst Growth Des. 2011; 325: 89 - 92.
dc.identifier.citedreferenceRa YH, Wang R, Woo SY, et al. Full- color single nanowire pixels for projection displays. Nano Lett. 2016; 16: 4608 - 4615.
dc.identifier.citedreferenceKrames MR, Shchekin OB, Mueller- Mach R, et al. Status and future of high- power light- emitting diodes for solid- state lighting. Display Technol. 2007; 3: 160 - 175.
dc.identifier.citedreferenceNakamura S, Senoh M, Iwasa N, Nagahama S. High- power InGaN single- quantum- well- structure blue and violet light- emitting diodes. Appl Phys Lett. 1995; 67: 1868 - 1870.
dc.identifier.citedreferenceShen C, Ng TK, Ooi BS. Enabling area- selective potential- energy engineering in InGaN/GaN quantum wells by post- growth intermixing. Opt Express. 2015; 23: 7991 - 7998.
dc.identifier.citedreferenceSousa MA, Esteves TC, Sedrine NB, et al. Luminescence studies on green emitting InGaN/GaN MQWs implanted with nitrogen. Sci Rep. 2015; 5: 9703.
dc.identifier.citedreferenceKishino K, Ishizawa S. Selective- area growth of GaN nanocolumns on Si (111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnology. 2015; 26: 225602.
dc.identifier.citedreferenceWang R, Nguyen HP, Connie AT, Lee J, Shih I, Mi Z. Color- tunable, phosphor- free InGaN nanowire light- emitting diode arrays monolithically integrated on silicon. Opt Express. 2014; 22 ( Suppl 7 ): A1768 - A1775.
dc.identifier.citedreferenceWang R, Ra Y- H, Wu Y, et al. Proc. SPIE 9748 2016, 9748, 97481S.
dc.identifier.citedreferenceGago- Calderón A, Fernández- Ramos J, Gago- Bohórquez A. Visual quality evaluation of large LED displays based on subjective sensory perception. Displays. 2013; 34: 359 - 370.
dc.identifier.citedreferenceChen E, Guo T. Modified Köhler illumination for LED- based projection display. Displays. 2014; 35: 84 - 89.
dc.identifier.citedreferenceChoi MK, Yang J, Kang K, et al. Wearable red- green- blue quantum dot light- emitting diode array using high- resolution intaglio transfer printing. Nat Commun. 2015; 6: 7149.
dc.identifier.citedreferenceKim S, Kwon HJ, Lee S, et al. Low- power flexible organic light- emitting diode display device. Adv Mater. 2011; 23: 3511 - 3516.
dc.identifier.citedreferenceYanagihara A, Ishizawa S, Kishino K. Directional radiation beam from yellow- emitting InGaN- based nanocolumn LEDs with ordered bottom- up nanocolumn array. Appl Phys Lett. 2014; 7: 112102.
dc.identifier.citedreferenceGong Z, Jin S, Chen Y, et al. J Appl Phys. 2010; 107: 013103.
dc.identifier.citedreferenceSekiguchi H, Kishino K, Kikuchi A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl Phys Lett. 2010; 96: 231104.
dc.identifier.citedreferenceKishino K, Sekiguchi H, Kikuchi AJ. Improved Ti- mask selective- area growth (SAG) by rf- plasma- assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. Cryst Growth Des. 2009; 311: 2063 - 2068.
dc.identifier.citedreferenceUrban A, Malindretos J, Klein- Wiele JH, Simon P, Rizzi A. Ga- polar GaN nanocolumn arrays with semipolar faceted tips. New J Phys. 2013; 15: 053045.
dc.identifier.citedreferenceKishino K, Yanagihara A, Ikeda K, Yamano K. Monolithic integration of four- colour InGaN- based nanocolumn LEDs. Electron Lett. 2015; 51: 852 - 854.
dc.identifier.citedreferenceKishino K, Nagashima K, Yamano K. Monolithic integration of InGaN- based nanocolumn light- emitting diodes with different emission colors. Appl Phys Express. 2013; 6: 012101.
dc.identifier.citedreferenceWang R, Liu X, Shih I, Mi Z. High efficiency, full- color AlInGaN quaternary nanowire light emitting diodes with spontaneous core- shell structures on Si. Appl Phys Lett. 2015; 106: 261104.
dc.identifier.citedreferenceKibria MG, Zhao S, Chowdhury FA, et al. Tuning the surface Fermi level on p- type gallium nitride nanowires for efficient overall water splitting. Nat Commun. 2014; 5: 3825.
dc.identifier.citedreferenceZhao S, Connie AT, Dastjerdi MH, et al. Optical and electrical properties of Mg- doped AlN nanowires grown by molecular beam epitaxy. Sci Rep. 2015; 5: 8332.
dc.identifier.citedreferenceWei T, Huo Z, Zhang Y, et al. Recent advancement on micro- /nano- spherical lens photolithography based on monolayer colloidal crystals. Opt Express. 2014; 22 ( Suppl 4 ): A1093 - A1100.
dc.identifier.citedreferenceShan Q, Meyaard DS, Dai Q, et al. Transport- mechanism analysis of the reverse leakage current in GaInN light- emitting diodes. Appl Phys Lett. 2011; 99: 253506.
dc.identifier.citedreferenceRa YH, Rashid RT, Liu X, Lee J, Mi Z. Scalable nanowire photonic crystals: molding the light emission of InGaN. Adv Funct Mater. 2017; 27: 1702364.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.