Show simple item record

Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts

dc.contributor.authorQu, Zhi‐bei
dc.contributor.authorFeng, Wei‐jie
dc.contributor.authorWang, Yichun
dc.contributor.authorRomanenko, Fedor
dc.contributor.authorKotov, Nicholas A.
dc.date.accessioned2020-06-03T15:22:33Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-06-03T15:22:33Z
dc.date.issued2020-05-25
dc.identifier.citationQu, Zhi‐bei ; Feng, Wei‐jie ; Wang, Yichun; Romanenko, Fedor; Kotov, Nicholas A. (2020). "Diverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts." Angewandte Chemie 132(22): 8620-8629.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/155470
dc.description.abstractComplex structures from nanoparticles are found in rocks, soils, and sea sediments but the mechanisms of their formation are poorly understood, which causes controversial conclusions about their genesis. Here we show that graphene quantum dots (GQDs) can assemble into complex structures driven by coordination interactions with metal ions commonly present in environment and serve a special role in Earth’s history, such as Fe3+ and Al3+. GQDs self- assemble into mesoscale chains, sheets, supraparticles, nanoshells, and nanostars. Specific assembly patterns are determined by the effective symmetry of the GQDs when forming the coordination assemblies with the metal ions. As such, maximization of the electronic delocalization of Ï - orbitals of GQDs with Fe3+ leads to GQD- Fe- GQD units with D2 symmetry, dipolar bonding potential, and linear assemblies. Taking advantage of high electron microscopy contrast of carbonaceous nanostructures in respect to ceramic background, the mineralogical counterparts of GQD assemblies are found in mineraloid shungite. These findings provide insight into nanoparticle dynamics during the rock formation that can lead to mineralized structures of unexpectedly high complexity.Komplexe Strukturen aus Nanopartikeln sind in Gesteinen, Böden und Meeressedimenten zu finden, aber die Mechanismen ihrer Entstehung sind kaum verstanden. Es wird gezeigt, dass sich Graphenquantenpunkte (GQDs) zu komplexen Strukturen zusammenfügen können, angetrieben durch Koordinationswechselwirkungen mit Metallionen wie Fe3+ and Al3+, die in der Umwelt häufig vorkommen und eine besondere Rolle in der Erdgeschichte spielen.
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Chemical Society
dc.subject.otherElektronische Konjugation
dc.subject.otherNanopartikel
dc.subject.otherSelbstorganisation
dc.subject.otherNanomineralogie
dc.subject.otherGraphen-Quantenpunkte
dc.titleDiverse Nanoassemblies of Graphene Quantum Dots and Their Mineralogical Counterparts
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155470/1/ange201908216.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155470/2/ange201908216_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155470/3/ange201908216-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/ange.201908216
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceM. Grünwald, P. L. Geissler, ACS Nano 2014, 8, 5891 - 5897.
dc.identifier.citedreferenceSee Ref.- [17].
dc.identifier.citedreferenceX. Ye, et- al., Nano Lett. 2013, 13, 4980 - 4988.
dc.identifier.citedreferenceJ. Peng, et- al., Nano Lett. 2012, 12, 844 - 849.
dc.identifier.citedreferenceZ. Qu, M. Zhang, T. Zhou, G. Shi, Chem. Eur. J. 2014, 20, 13777 - 13782.
dc.identifier.citedreferenceQ. Li, B. Chen, B. Xing, Environ. Sci. Technol. 2017, 51, 1364 - 1376.
dc.identifier.citedreferenceThe extended assemblies refer to non-random patterns that have no apparent limitations for at least one of the dimensions, whereas the terminal assemblies refer the motifs that display specific limitations for all the dimensions.
dc.identifier.citedreferenceY. Xia, et- al., Nat. Nanotechnol. 2011, 6, 580 - 587.
dc.identifier.citedreferenceS. P. Slotznick, J. M. Eiler, W. W. Fischer, Geochim. Cosmochim. Acta 2018, 224, 96 - 115.
dc.identifier.citedreferenceR. J. P. Williams, FEBS Lett. 2012, 586, 479 - 484.
dc.identifier.citedreferenceA. C. Ferrari, D. M. Basko, Nat. Nanotechnol. 2013, 8, 235 - 246.
dc.identifier.citedreferenceD. Morphew, J. Shaw, C. Avins, D. Chakrabarti, ACS Nano 2018, 12, 2355 - 2364.
dc.identifier.citedreferenceK. Van Workum, J. Douglas, Phys. Rev. E 2006, 73, 031502.
dc.identifier.citedreferenceA. H. Gröschel, et- al., Nature 2013, 503, 247.
dc.identifier.citedreferenceJ. Guo, et- al., Nat. Nanotechnol. 2016, 11, 1105 - 1111.
dc.identifier.citedreferenceV. Liljeström, J. Mikkilä, M. A. Kostiainen, Nat. Commun. 2014, 5, 4445.
dc.identifier.citedreferenceH. Qiu, Z. M. Hudson, M. A. Winnik, I. Manners, Science 2015, 347, 1329 - 1332.
dc.identifier.citedreferenceC. Castiglioni, M. Del Zoppo, G. Zerbi, J. Raman Spectrosc. 1993, 24, 485 - 494.
dc.identifier.citedreferenceE. Agosti, M. Rivola, V. Hernandez, M. Del Zoppo, G. Zerbi, Synth. Met. 1999, 100, 101 - 112.
dc.identifier.citedreferenceD. J. Masiello, G. C. Schatz, Phys. Rev. A 2008, 78, 42505.
dc.identifier.citedreferenceT. Bala, B. L. V. Prasad, M. Sastry, M. U. Kahaly, U. V. Waghmare, J. Phys. Chem. A 2007, 111, 6183 - 6190.
dc.identifier.citedreferenceB. S. Razbirin, N. N. Rozhkova, E. F. Sheka, D. K. Nelson, N. Starukhin, J. Exp. Theor. Phys. 2014, 118, 735 - 746.
dc.identifier.citedreferenceB. Razbirin, N. Rozhkova, E. Sheka, Nanosyst. Phys. Chem. Math. 2014, 5, 217 - 233.
dc.identifier.citedreferenceV. V. Kovalevski, P. R. Buseck, J. M. Cowley, Carbon 2001, 39, 243 - 256.
dc.identifier.citedreferenceV. A. Melezhik, M. M. Filippov, A. E. Romashkin, Ore Geol. Rev. 2004, 24, 135 - 154.
dc.identifier.citedreferenceT. J. Bernatowicz, et- al., Astrophys. J. 1996, 472, 760 - 782.
dc.identifier.citedreferenceM. Yang, et- al., Nat. Chem. 2017, 9, 287 - 294.
dc.identifier.citedreferenceZ. Li, et- al., Sci. Rep. 2015, 5, 10258.
dc.identifier.citedreferenceM. S. Dodd, et- al., Nature 2017, 543, 60 - 64.
dc.identifier.citedreferenceM. A. Boles, M. Engel, D. V. Talapin, Chem. Rev. 2016, 116, 11220 - 11289.
dc.identifier.citedreferenceJ.-Y. Kim, N. A. Kotov, Chem. Mater. 2014, 26, 134 - 152.
dc.identifier.citedreferenceK. Ariga, et- al., Sci. Technol. Adv. Mater. 2019, 20, 51 - 95.
dc.identifier.citedreferenceN. A. Kotov, I. Dékány, J. H. Fendler, Adv. Mater. 1996, 8, 637 - 641.
dc.identifier.citedreferenceN. Zhang, H. Qiu, Y. Si, W. Wang, J. Gao, Carbon 2011, 49, 827 - 837.
dc.identifier.citedreferenceM. V. Kovalenko, et- al., ACS Nano 2015, 9, 1012 - 1057.
dc.identifier.citedreferenceR. M. Hough, et- al., Geology 2008, 36, 571.
dc.identifier.citedreferenceS. Tian, T. Wang, G. Li, M. Sheng, P. Zhang, Langmuir 2019, 35, 5711 - 5718.
dc.identifier.citedreferenceN. Tepe, M. Bau, Chem. Geol. 2015, 412, 59 - 68.
dc.identifier.citedreferenceN. Kumar, V. Shah, V. K. Walker, J. Hazard. Mater. 2011, 190, 816 - 822.
dc.identifier.citedreferenceM. Karl, C. Leck, E. Coz, J. Heintzenberg, Geophys. Res. Lett. 2013, 40, 3738 - 3743.
dc.identifier.citedreferenceJ. R. Hawkings, et- al., Earth Planet. Sci. Lett. 2018, 493, 92 - 101.
dc.identifier.citedreferenceD. W. Keith, D. K. Weisenstein, J. A. Dykema, F. N. Keutsch, Proc. Natl. Acad. Sci. USA 2016, 113, 14910 - 14914.
dc.identifier.citedreferenceS. Tilmes, et- al., J. Geophys. Res. Atmos. 2017, 122, 12,591- 12,615.
dc.identifier.citedreferenceN. A. Kotov, Europhys. Lett. 2017, 119, 66008.
dc.identifier.citedreferenceH. Zhang, J. F. Banfield, Rev. Mineral. Geochem. 2001, 44, 1 - 58.
dc.identifier.citedreferenceM. Reich, et- al., Geology 2006, 34, 1033.
dc.identifier.citedreferenceR. Ye, et- al., Nat. Commun. 2013, 4, 2943.
dc.identifier.citedreferenceB. Nowack, T. D. Bucheli, Environ. Pollut. 2007, 150, 5 - 22.
dc.identifier.citedreferenceS. M. Louie, R. Ma, G. V. Lowry, Front. Nanosci. 2014, 7, 55 - 87.
dc.identifier.citedreferenceS. Wagner, A. Gondikas, E. Neubauer, T. Hofmann, F. Von Der Kammer, Angew. Chem. Int. Ed. 2014, 53, 12398 - 12419; Angew. Chem. 2014, 126, 12604 - 12626.
dc.identifier.citedreferenceR. L. Penn, J. F. Banfield, Science 1998, 281, 969 - 971.
dc.identifier.citedreferenceZ. Tang, N. A. Kotov, M. Giersig, Science 2002, 297, 237 - 240.
dc.identifier.citedreferenceJ. J. De Yoreo, et- al., Science 2015, 349, aaa6760.
dc.identifier.citedreferenceH. Cölfen, M. Antonietti, Angew. Chem. Int. Ed. 2005, 44, 5576 - 5591; Angew. Chem. 2005, 117, 5714 - 5730.
dc.identifier.citedreferenceK. Hirai, et- al., Angew. Chem. Int. Ed. 2015, 54, 8966; Angew. Chem. 2015, 127, 9094.
dc.identifier.citedreferenceA. Pal, A. Bhakat, A. Chattopadhyay, J. Phys. Chem. C 2019, 123, 19421 - 19428.
dc.identifier.citedreferenceM. Hepel, D. Blake, M. McCabe, M. Stobiecka, K. Coopersmith, Assembly of Gold Nanoparticles Induced by Metal Ions. ACS Symposium Series, American Chemical Society, Washington, 2012 https://doi.org/10.1021/bk-2012-1112.ch008.
dc.identifier.citedreferenceT. Benselfelt, M. Nordenström, M. M. Hamedi, L. Wågberg, Nanoscale 2019, 11, 3514 - 3520.
dc.identifier.citedreferenceH.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, ACS Nano 2012, 6, 2693 - 2703.
dc.identifier.citedreferenceD. E. Canfield, Geochim. Cosmochim. Acta 1989, 53, 619 - 632.
dc.identifier.citedreferenceF. M. M. Morel, A. J. Milligan, M. A. Saito, Treatise on Geochemistry, 2nd.- ed., Elsevier, Amsterdam, 2014, pp.- 123 - 150, https://doi.org/10.1016/B978-0-08-095975-7.00605-7.
dc.identifier.citedreferenceM. Homann, et- al., Nat. Geosci. 2018, 11, 665 - 671.
dc.identifier.citedreferenceD. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 2010, 22, 734 - 738.
dc.identifier.citedreferenceL. A. Ponomarenko, et- al., Science 2008, 320, 356 - 358.
dc.identifier.citedreferenceH. Sun, L. Wu, W. Wei, X. Qu, Mater. Today 2013, 16, 433 - 442.
dc.identifier.citedreferenceX. Yan, X. Cui, L.-S. Li, J. Am. Chem. Soc. 2010, 132, 5944 - 5945.
dc.identifier.citedreferenceK. Li, et- al., J. Mater. Chem. B 2017, 5, 4811 - 4826.
dc.identifier.citedreferenceJ. Shen, Y. Zhu, X. Yang, C. Li, Chem. Commun. 2012, 48, 3686.
dc.identifier.citedreferenceX. Zhang, et- al., Science 2017, 356, 434 - 437.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.