Show simple item record

Miro: A molecular switch at the center of mitochondrial regulation

dc.contributor.authorEberhardt, Emily L.
dc.contributor.authorLudlam, Anthony V.
dc.contributor.authorTan, Zhenyu
dc.contributor.authorCianfrocco, Michael A.
dc.date.accessioned2020-06-03T15:22:41Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-06-03T15:22:41Z
dc.date.issued2020-06
dc.identifier.citationEberhardt, Emily L.; Ludlam, Anthony V.; Tan, Zhenyu; Cianfrocco, Michael A. (2020). "Miro: A molecular switch at the center of mitochondrial regulation." Protein Science 29(6): 1269-1284.
dc.identifier.issn0961-8368
dc.identifier.issn1469-896X
dc.identifier.urihttps://hdl.handle.net/2027.42/155476
dc.description.abstractThe orchestration of mitochondria within the cell represents a critical aspect of cell biology. At the center of this process is the outer mitochondrial membrane protein, Miro. Miro coordinates diverse cellular processes by regulating connections between organelles and the cytoskeleton that range from mediating contacts between the endoplasmic reticulum and mitochondria to the regulation of both actin and microtubule motor proteins. Recently, a number of cell biological, biochemical, and protein structure studies have helped to characterize the myriad roles played by Miro. In addition to answering questions regarding Miro’s function, these studies have opened the door to new avenues in the study of Miro in the cell. This review will focus on summarizing recent findings for Miro’s structure, function, and activity while highlighting key questions that remain unanswered.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherneurodegeneration
dc.subject.otherorganelle contact sites
dc.subject.otherGTPase
dc.subject.othermicrotubule transport
dc.subject.otherMiro
dc.subject.othermitochondria
dc.titleMiro: A molecular switch at the center of mitochondrial regulation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155476/1/pro3839.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155476/2/pro3839_am.pdf
dc.identifier.doi10.1002/pro.3839
dc.identifier.sourceProtein Science
dc.identifier.citedreferenceChung JY‐M, Steen JA, Schwarz TL. Phosphorylation‐induced motor shedding is required at mitosis for proper distribution and passive inheritance of mitochondria. Cell Rep. 2016; 16: 2142 – 2155.
dc.identifier.citedreferenceWalch L, Pellier E, Leng W, et al. GBF1 and Arf1 interact with Miro and regulate mitochondrial positioning within cells. Sci Rep. 2018; 8: 17121.
dc.identifier.citedreferenceGillingham AK, Munro S. The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol. 2007; 23: 579 – 611.
dc.identifier.citedreferenceYe K, Hurt KJ, Wu FY, et al. Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell. 2000; 103: 919 – 930.
dc.identifier.citedreferenceAckema KB, Hench J, Böckler S, et al. The small GTPase Arf1 modulates mitochondrial morphology and function. EMBO J. 2014; 33: 2659 – 2675.
dc.identifier.citedreferenceChazin WJ. Relating form and function of EF‐hand calcium binding proteins. Acc Chem Res. 2011; 44: 171 – 179.
dc.identifier.citedreferenceNemani N, Carvalho E, Tomar D, et al. MIRO‐1 determines mitochondrial shape transition upon GPCR activation and Ca2+ stress. Cell Rep. 2018; 23: 1005 – 1019.
dc.identifier.citedreferenceRaffaello A, De Stefani D, Sabbadin D, et al. The mitochondrial calcium uniporter is a multimer that can include a dominant‐negative pore‐forming subunit. EMBO J. 2013; 32: 2362 – 2376.
dc.identifier.citedreferenceNiescier RF, Hong K, Park D, Min K‐T. MCU interacts with Miro1 to modulate mitochondrial functions in neurons. J Neurosci. 2018; 38: 4666 – 4677.
dc.identifier.citedreferenceFranco‐Iborra S, Vila M, Perier C. Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson’s disease and Huntington’s disease. Front Neurosci. 2018; 12: 342.
dc.identifier.citedreferenceLópez‐Doménech G, Covill‐Cooke C, Ivankovic D, et al. Miro proteins coordinate microtubule‐and actin‐dependent mitochondrial transport and distribution. EMBO J. 2018; 37: 321 – 336.
dc.identifier.citedreferenceKulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci. 2012; 50: 10 – 20.
dc.identifier.citedreferenceŠišková Z, Justus D, Kaneko H, et al. Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer’s disease. Neuron. 2014; 84: 1023 – 1033.
dc.identifier.citedreferenceGoedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol. 2013; 9: 13 – 24.
dc.identifier.citedreferenceMarras C, Beck JC, Bower JH, et al. Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis. 2018; 4: 21.
dc.identifier.citedreferenceAnon Parkinson’s Disease Statistics––Parkinson’s News Today. Parkinson’s News Today. Available from: https://parkinsonsnewstoday.com/parkinsons-disease-statistics/
dc.identifier.citedreferenceJin SM, Youle RJ. PINK1‐ and Parkin‐mediated mitophagy at a glance. J Cell Sci. 2012; 125: 795 – 799.
dc.identifier.citedreferenceWeihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry. 2009; 48: 2045 – 2052.
dc.identifier.citedreferenceWang X, Winter D, Ashrafi G, et al. PINK1 and parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011; 147: 893 – 906.
dc.identifier.citedreferenceSafiulina D, Kuum M, Choubey V, et al. Miro proteins prime mitochondria for Parkin translocation and mitophagy. EMBO J. 2019; 38: e99384.
dc.identifier.citedreferenceShlevkov E, Kramer T, Schapansky J, LaVoie MJ, Schwarz TL. Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proc Natl Acad Sci USA. 2016; 113: E6097 – E6106.
dc.identifier.citedreferenceLópez‐Doménech G, Covill‐Cooke C, Howden JH, et al. Miro ubiquitination is critical for efficient damage‐induced PINK1/parkin‐mediated mitophagy. BioRXiv. https://doi.org/10.1101/414664.
dc.identifier.citedreferenceHsieh C‐H, Shaltouki A, Gonzalez AE, et al. Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell. 2016; 19: 709 – 724.
dc.identifier.citedreferenceShaltouki A, Hsieh C‐H, Kim MJ, Wang X. Alpha‐synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson’s models. Acta Neuropathol. 2018; 136: 607 – 620.
dc.identifier.citedreferenceHsieh C‐H, Li L, Vanhauwaert R, et al. Miro1 marks Parkinson’s disease subset and Miro1 reducer rescues neuron loss in Parkinson’s models. Cell Metab. 2019; 30: 1131 – 1140.
dc.identifier.citedreferenceHung V, Lam SS, Udeshi ND, et al. Proteomic mapping of cytosol‐facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. Elife. 2017; 6: e24463.
dc.identifier.citedreferenceCalvo SE, Clauser KR, Mootha VK. MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016; 44: D1251 – D1257.
dc.identifier.citedreferenceFransson A, Ruusala A, Aspenström P. Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem. 2003; 278: 6495 – 6502.
dc.identifier.citedreferenceGuo X, Macleod GT, Wellington A, et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron. 2005; 47: 379 – 393.
dc.identifier.citedreferenceKlosowiak JL, Park S, Smith KP, et al. Structural insights into Parkin substrate lysine targeting from minimal Miro substrates. Sci Rep. 2016; 6: 33019.
dc.identifier.citedreferenceSyrovatkina V, Alegre KO, Dey R, Huang X‐Y. Regulation, signaling, and physiological functions of G‐proteins. J Mol Biol. 2016; 428: 3850 – 3868.
dc.identifier.citedreferencePeters DT, Kay L, Eswaran J, Lakey JH, Soundararajan M. Human Miro proteins act as NTP hydrolases through a novel, non‐canonical catalytic mechanism. Int J Mol Sci. 2018; 19: 3839.
dc.identifier.citedreferenceKlosowiak JL, Focia PJ, Chakravarthy S, Landahl EC, Freymann DM, Rice SE. Structural coupling of the EF hand and C‐terminal GTPase domains in the mitochondrial protein Miro. EMBO Rep. 2013; 14: 968 – 974.
dc.identifier.citedreferenceSmith KP, Focia PJ, Chakravarthy S, et al. Structural assembly of the human Miro1/2 GTPases based on the crystal structure of the N‐terminal GTPase domain. bioRxiv. 2019; 729251. https://www.biorxiv.org/content/10.1101/729251v1.
dc.identifier.citedreferenceReis K, Fransson A, Aspenström P. The Miro GTPases: At the heart of the mitochondrial transport machinery. FEBS Lett. 2009; 583: 1391 – 1398.
dc.identifier.citedreferenceFransson S, Ruusala A, Aspenström P. The atypical Rho GTPases Miro‐1 and Miro‐2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun. 2006; 344: 500 – 510.
dc.identifier.citedreferenceMacaskill AF, Rinholm JE, Twelvetrees AE, et al. Miro1 is a calcium sensor for glutamate receptor‐dependent localization of mitochondria at synapses. Neuron. 2009; 61: 541 – 555.
dc.identifier.citedreferenceKanfer G, Courthéoux T, Peterka M, et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp‐F. Nat Commun. 2015; 6: 8015.
dc.identifier.citedreferenceBernhard W, Rouiller C. Close topographical relationship between mitochondria and ergastoplasm of liver cells in a definite phase of cellular activity. J Biophys Biochem Cytol. 1956; 2: 73 – 78.
dc.identifier.citedreferenceWieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P. Isolation of mitochondria‐associated membranes and mitochondria from animal tissues and cells. Nat Protoc. 2009; 4: 1582 – 1590.
dc.identifier.citedreferenceMichel AH, Kornmann B. The ERMES complex and ER‐mitochondria connections. Biochem Soc Trans. 2012; 40: 445 – 450.
dc.identifier.citedreferenceEisenberg‐Bord M, Shai N, Schuldiner M, Bohnert M. A tether is a tether is a tether: Tethering at membrane contact sites. Dev Cell. 2016; 39: 395 – 409.
dc.identifier.citedreferenceEllenrieder L, Rampelt H, Becker T. Connection of protein transport and organelle contact sites in mitochondria. J Mol Biol. 2017; 429: 2148 – 2160.
dc.identifier.citedreferenceTamura Y, Endo T. Role of intra‐ and inter‐mitochondrial membrane contact sites in yeast phospholipid biogenesis. Adv Exp Med Biol. 2017; 997: 121 – 133.
dc.identifier.citedreferenceZecchini E, Siviero R, Giorgi C, Rizzuto R, Pinton P. Mitochondrial calcium signalling: Message of life and death. Ital J Biochem. 2007; 56: 235 – 242.
dc.identifier.citedreferenceKornmann B, Currie E, Collins SR, et al. An ER‐mitochondria tethering complex revealed by a synthetic biology screen. Science. 2009; 325: 477 – 481.
dc.identifier.citedreferenceLee S, Lee K‐S, Huh S, et al. Polo kinase phosphorylates Miro to control ER‐mitochondria contact sites and mitochondrial Ca(2+) homeostasis in neural stem cell development. Dev Cell. 2016; 37: 174 – 189.
dc.identifier.citedreferenceFrederick RL, McCaffery JM, Cunningham KW, Okamoto K, Shaw JM. Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J Cell Biol. 2004; 167: 87 – 98.
dc.identifier.citedreferenceKoshiba T, Holman HA, Kubara K, et al. Structure‐function analysis of the yeast mitochondrial rho GTPase, Gem1p: Implications for mitochondrial inheritance. J Biol Chem. 2011; 286: 354 – 362.
dc.identifier.citedreferenceKornmann B, Osman C, Walter P. The conserved GTPase Gem1 regulates endoplasmic reticulum‐mitochondria connections. Proc Natl Acad Sci USA. 2011; 108: 14151 – 14156.
dc.identifier.citedreferenceStroud DA, Oeljeklaus S, Wiese S, et al. Composition and topology of the endoplasmic reticulum‐mitochondria encounter structure. J Mol Biol. 2011; 413: 743 – 750.
dc.identifier.citedreferenceMurley A, Lackner LL, Osman C, et al. ER‐associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. Elife. 2013; 2: e00422.
dc.identifier.citedreferenceFriedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. ER tubules mark sites of mitochondrial division. Science. 2011; 334: 358 – 362.
dc.identifier.citedreferenceLee S, Min K‐T. The interface between ER and mitochondria: Molecular compositions and functions. Mol Cells. 2018; 41: 1000 – 1007.
dc.identifier.citedreferenceRizzuto R, Pinton P, Carrington W, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998; 280: 1763 – 1766.
dc.identifier.citedreferenceRapizzi E, Pinton P, Szabadkai G, et al. Recombinant expression of the voltage‐dependent anion channel enhances the transfer of Ca 2+ microdomains to mitochondria. J Cell Biol. 2002; 159: 613 – 624.
dc.identifier.citedreferenceD’Angelo G, Vicinanza M, De Matteis MA. Lipid‐transfer proteins in biosynthetic pathways. Curr Opin Cell Biol. 2008; 20: 360 – 370.
dc.identifier.citedreferenceGalmes R, Houcine A, van Vliet AR, Agostinis P, Jackson CL, Giordano F. ORP5/ORP8 localize to endoplasmic reticulum‐mitochondria contacts and are involved in mitochondrial function. EMBO Rep. 2016; 17: 800 – 810.
dc.identifier.citedreferenceIwasawa R, Mahul‐Mellier A‐L, Datler C, Pazarentzos E, Grimm S. Fis1 and Bap31 bridge the mitochondria‐ER interface to establish a platform for apoptosis induction. EMBO J. 2011; 30: 556 – 568.
dc.identifier.citedreferenceSimmen T, Aslan JE, Blagoveshchenskaya AD, et al. PACS‐2 controls endoplasmic reticulum‐mitochondria communication and Bid‐mediated apoptosis. EMBO J. 2005; 24: 717 – 729.
dc.identifier.citedreferenceRostovtseva TK, Tan W, Colombini M. On the role of VDAC in apoptosis: Fact and fiction. J Bioenerg Biomembr. 2005; 37: 129 – 142.
dc.identifier.citedreferenceLee K‐S, Huh S, Lee S, et al. Altered ER‐mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc Natl Acad Sci USA. 2018; 115: E8844 – E8853.
dc.identifier.citedreferenceGrossmann D, Berenguer‐Escuder C, Bellet ME, et al. Mutations in RHOT1 disrupt endoplasmic reticulum‐mitochondria contact sites interfering with calcium homeostasis and mitochondrial dynamics in Parkinson’s disease. Antioxid Redox Signal. 2019; 31: 1213 – 1234.
dc.identifier.citedreferenceModi S, López‐Doménech G, Halff EF, et al. Miro clusters regulate ER‐mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun. 2019; 10: 4399.
dc.identifier.citedreferenceIslinger M, Cardoso MJR, Schrader M. Be different––The diversity of peroxisomes in the animal kingdom. Biochim Biophys Acta. 2010; 1803: 881 – 897.
dc.identifier.citedreferenceFransen M, Lismont C, Walton P. The peroxisome‐mitochondria connection: How and why? Int J Mol Sci. 2017; 18: 1126.
dc.identifier.citedreferenceCostello JL, Castro IG, Camões F, et al. Predicting the targeting of tail‐anchored proteins to subcellular compartments in mammalian cells. J Cell Sci. 2017; 130: 1675 – 1687.
dc.identifier.citedreferenceOkumoto K, Ono T, Toyama R, Shimomura A, Nagata A, Fujiki Y. New splicing variants of mitochondrial Rho GTPase‐1 (Miro1) transport peroxisomes. J Cell Biol. 2018; 217: 619 – 633.
dc.identifier.citedreferenceCastro IG, Richards DM, Metz J, et al. A role for mitochondrial Rho GTPase 1 (MIRO1) in motility and membrane dynamics of peroxisomes. Traffic. 2018; 19: 229 – 242.
dc.identifier.citedreferenceCovill‐Cooke C, Toncheva VS, Drew J, Birsa N, López‐Doménech G, Kittler JT. Peroxisomal fission is modulated by the mitochondrial Rho‐GTPases, Miro1 and Miro2. EMBO Rep. 2020; 21: e49865.
dc.identifier.citedreferenceDietrich D, Seiler F, Essmann F, Dodt G. Identification of the kinesin KifC3 as a new player for positioning of peroxisomes and other organelles in mammalian cells. Biochim Biophys Acta. 2013; 1833: 3013 – 3024.
dc.identifier.citedreferenceGlater EE, Megeath LJ, Stowers RS, Schwarz TL. Axonal transport of mitochondria requires Milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol. 2006; 173: 545 – 557.
dc.identifier.citedreferencevan Spronsen M, Mikhaylova M, Lipka J, et al. TRAK/Milton motor‐adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron. 2013; 77: 485 – 502.
dc.identifier.citedreferenceSalogiannis J, Egan MJ, Reck‐Peterson SL. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J Cell Biol. 2016; 212: 289 – 296.
dc.identifier.citedreferenceBharti P, Schliebs W, Schievelbusch T, et al. PEX14 is required for microtubule‐based peroxisome motility in human cells. J Cell Sci. 2011; 124: 1759 – 1768.
dc.identifier.citedreferenceWang X, Schwarz TL. The mechanism of Ca2+ −dependent regulation of kinesin‐mediated mitochondrial motility. Cell. 2009; 136: 163 – 174.
dc.identifier.citedreferenceLópez‐Doménech G, Covill‐Cooke C, Ivankovic D, et al. Miro proteins coordinate microtubule‐ and actin‐dependent mitochondrial transport and distribution. EMBO J. 2018; 37: 321 – 336.
dc.identifier.citedreferenceMorris RL, Hollenbeck PJ. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci. 1993; 104: 917 – 927.
dc.identifier.citedreferenceBrickley K, Stephenson FA. Trafficking kinesin protein (TRAK)‐mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem. 2011; 286: 18079 – 18092.
dc.identifier.citedreferenceStowers RS, Megeath LJ, Górska‐Andrzejak J, Meinertzhagen IA, Schwarz TL. Axonal transport of mitochondria to synapses depends on Milton, a novel drosophila protein. Neuron. 2002; 36: 1063 – 1077.
dc.identifier.citedreferenceSchwarz TL. Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol. 2013; 5: a011304.
dc.identifier.citedreferenceLópez‐Doménech G, Higgs NF, Vaccaro V, et al. Loss of dendritic complexity precedes neurodegeneration in a mouse model with disrupted mitochondrial distribution in mature dendrites. Cell Rep. 2016; 17: 317 – 327.
dc.identifier.citedreferenceLin M‐Y, Sheng Z‐H. Regulation of mitochondrial transport in neurons. Exp Cell Res. 2015; 334: 35 – 44.
dc.identifier.citedreferenceLigon LA, Steward O. Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol. 2000; 427: 340 – 350.
dc.identifier.citedreferenceMisgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW. Imaging axonal transport of mitochondria in vivo. Nat Methods. 2007; 4: 559 – 561.
dc.identifier.citedreferenceRusso GJ, Louie K, Wellington A, et al. Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J Neurosci. 2009; 29: 5443 – 5455.
dc.identifier.citedreferenceSmit‐Rigter L, Rajendran R, Silva CAP, et al. Mitochondrial dynamics in visual cortex are limited in vivo and not affected by axonal structural plasticity. Curr Biol. 2016; 26: 2609 – 2616.
dc.identifier.citedreferenceMoutaux E, Christaller W, Scaramuzzino C, et al. Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons. Sci Rep. 2018; 8: 13429.
dc.identifier.citedreferenceLewis TL Jr, Turi GF, Kwon S‐K, Losonczy A, Polleux F. Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo. Curr Biol. 2016; 26: 2602 – 2608.
dc.identifier.citedreferenceKang J‐S, Tian J‐H, Pan P‐Y, et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short‐term facilitation. Cell. 2008; 132: 137 – 148.
dc.identifier.citedreferenceChen Y, Sheng Z‐H. Kinesin‐1‐syntaphilin coupling mediates activity‐dependent regulation of axonal mitochondrial transport. J Cell Biol. 2013; 202: 351 – 364.
dc.identifier.citedreferenceGutnick A, Banghart MR, West ER, Schwarz TL. The light‐sensitive dimerizer zapalog reveals distinct modes of immobilization for axonal mitochondria. Nat Cell Biol. 2019; 21: 768 – 777.
dc.identifier.citedreferenceYi M, Weaver D, Hajnóczky G. Control of mitochondrial motility and distribution by the calcium signal: A homeostatic circuit. J Cell Biol. 2004; 167: 661 – 672.
dc.identifier.citedreferenceFrederick RL, Shaw JM. Moving mitochondria: Establishing distribution of an essential organelle. Traffic. 2007; 8: 1668 – 1675.
dc.identifier.citedreferencePathak D, Sepp KJ, Hollenbeck PJ. Evidence that myosin activity opposes microtubule‐based axonal transport of mitochondria. J Neurosci. 2010; 30: 8984 – 8992.
dc.identifier.citedreferenceQuintero OA, DiVito MM, Adikes RC, et al. Human Myo19 is a novel myosin that associates with mitochondria. Curr Biol. 2009; 19: 2008 – 2013.
dc.identifier.citedreferenceLu Z, Ma X‐N, Zhang H‐M, et al. Mouse myosin‐19 is a plus‐end‐directed, high‐duty ratio molecular motor. J Biol Chem. 2014; 289: 18535 – 18548.
dc.identifier.citedreferenceAdikes RC, Unrath WC, Yengo CM, Quintero OA. Biochemical and bioinformatic analysis of the myosin‐XIX motor domain. Cytoskeleton. 2013; 70: 281 – 295.
dc.identifier.citedreferenceRohn JL, Patel JV, Neumann B, et al. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Curr Biol. 2014; 24: 2598 – 2605.
dc.identifier.citedreferenceShneyer BI, Ušaj M, Henn A. Myo19 is an outer mitochondrial membrane motor and effector of starvation‐induced filopodia. J Cell Sci. 2016; 129: 543 – 556.
dc.identifier.citedreferenceUšaj M, Henn A. Kinetic adaptation of human Myo19 for active mitochondrial transport to growing filopodia tips. Sci Rep. 2017; 7: 11596.
dc.identifier.citedreferenceOeding SJ, Majstrowicz K, Hu X‐P, et al. Identification of Miro1 and Miro2 as mitochondrial receptors for myosin XIX. J Cell Sci. 2018; 131: jcs219469. https://jcs.biologists.org/content/131/17/jcs219469.long.
dc.identifier.citedreferenceBocanegra JL, Fujita BM, Melton NR, et al. The MyMOMA domain of MYO19 encodes for distinct Miro‐dependent and Miro‐independent mechanisms of interaction with mitochondrial membranes. Cytoskeleton. 2019; 109: 2253.
dc.identifier.citedreferenceMisko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci. 2010; 30: 4232 – 4240.
dc.identifier.citedreferenceLee CA, Chin L‐S, Li L. Hypertonia‐linked protein Trak1 functions with mitofusins to promote mitochondrial tethering and fusion. Protein Cell. 2018; 9: 693 – 716.
dc.identifier.citedreferencePernas L, Scorrano L. Mito‐morphosis: Mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016; 78: 505 – 531.
dc.identifier.citedreferenceKoshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. Structural basis of mitochondrial tethering by mitofusin complexes. Science. 2004; 305: 858 – 862.
dc.identifier.citedreferenceEura Y, Ishihara N, Yokota S, Mihara K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem. 2003; 134: 333 – 344.
dc.identifier.citedreferenceKalinski AL, Kar AN, Craver J, et al. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J Cell Biol. 2019; 218: 1871 – 1890.
dc.identifier.citedreferenceChoudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co‐regulates major cellular functions. Science. 2009; 325: 834 – 840.
dc.identifier.citedreferencePeterka M, Kornmann B. Miro‐dependent mitochondrial pool of CENP‐F and its farnesylated C‐terminal domain are dispensable for normal development in mice. PLoS Genet. 2019; 15: e1008050.
dc.identifier.citedreferenceKanfer G, Peterka M, Arzhanik VK, et al. CENP‐F couples cargo to growing and shortening microtubule ends. Mol Biol Cell. 2017; 28: 2343 – 2459.
dc.identifier.citedreferenceDing L, Lei Y, Han Y, Li Y, Ji X, Liu L. Vimar is a novel regulator of mitochondrial fission through Miro. PLoS Genet. 2016; 12: e1006359.
dc.identifier.citedreferenceBabic M, Russo GJ, Wellington AJ, Sangston RM, Gonzalez M, Zinsmaier KE. Miro’s N‐terminal GTPase domain is required for transport of mitochondria into axons and dendrites. J Neurosci. 2015; 35: 5754 – 5771.
dc.identifier.citedreferenceSuzuki M, Danilchanka O, Mekalanos JJ. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. Cell Host Microbe. 2014; 16: 581 – 591.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.