Show simple item record

Biological and clinical significance of cancer stem cell plasticity

dc.contributor.authorZhu, Yongyou
dc.contributor.authorLuo, Ming
dc.contributor.authorBrooks, Michael
dc.contributor.authorClouthier, Shawn G
dc.contributor.authorWicha, Max S
dc.date.accessioned2020-06-03T15:22:46Z
dc.date.available2020-06-03T15:22:46Z
dc.date.issued2014-12
dc.identifier.citationZhu, Yongyou; Luo, Ming; Brooks, Michael; Clouthier, Shawn G; Wicha, Max S (2014). "Biological and clinical significance of cancer stem cell plasticity." Clinical and Translational Medicine 3(1): 1-11.
dc.identifier.issn2001-1326
dc.identifier.issn2001-1326
dc.identifier.urihttps://hdl.handle.net/2027.42/155480
dc.description.abstractIn the past decade, the traditional view of cancers as a homogeneous collection of malignant cells is being replaced by a model of ever increasing complexity suggesting that cancers are complex tissues composed of multiple cell types. This complex model of tumorigenesis has been well supported by a growing body of evidence indicating that most cancers including those derived from blood and solid tissues display a hierarchical organization of tumor cells with phenotypic and functional heterogeneity and at the apex of this hierarchy are cells capable of self‐renewal. These “tumor imitating cells” or “cancer stem cells” drive tumorigenesis and contribute to metastasis, treatment resistance and tumor relapse. Although tumor stem cells themselves may display both genetic and phenotypic heterogeneity, recent studies have demonstrated that cancer stem cells maintain plasticity to transition between mesenchymal‐like (EMT) and epithelial‐like (MET) states, which may be regulated by the tumor microenvironment. These stem cell state transitions may play a fundamental role in tumor progression and treatment resistance. In this review, we discuss the emerging knowledge regarding the plasticity of cancer stem cells with an emphasis on the signaling pathways and noncoding RNAs including microRNAs (miRNA) and long non‐coding RNAs (lncRNAs) in regulation of this plasticity during tumor growth and metastasis. Lastly, we point out the importance of targeting both the EMT and MET states of CSCs in order to eliminate these lethal seeds of cancers.
dc.publisherSpringer Berlin Heidelberg
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPlasticity
dc.subject.otherCancer stem cells
dc.subject.otherEMT
dc.subject.otherMET
dc.titleBiological and clinical significance of cancer stem cell plasticity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155480/1/ctm2s4016901400323.pdf
dc.identifier.doi10.1186/s40169-014-0032-3
dc.identifier.sourceClinical and Translational Medicine
dc.identifier.citedreferenceBach D, Fuereder J, Karbiener M, Scheideler M, Ress AL, Neureiter D, Kemmerling R, Dietze O, Wiederstein M, Berr F, et al: Comprehensive analysis of alterations in the miRNome in response to photodynamic treatment. J Photochem Photobiol B 2013, 120: 74 – 81.
dc.identifier.citedreferenceHan M, Liu M, Wang Y, Chen X, Xu J, Sun Y, Zhao L, Qu H, Fan Y, Wu C: Antagonism of miR‐21 reverses epithelial‐mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One 2012, 7 ( 6 ): e39520.
dc.identifier.citedreferenceLiu S, Clouthier S, Wicha M: Role of microRNAs in the regulation of breast cancer stem cells. J Mammary Gland Biol Neoplasia 2012, 17 ( 1 ): 15 – 21.
dc.identifier.citedreferenceDeng L, Shang L, Bai S, Chen J, He X, Trevino RM, Chen S, Li X, Meng X, Yu B, Wang X, Liu Y, McDermott SP, Ariazi AE, Ginestier C, Ibarra I, Ke J, Luther TK, Clouthier SG, Xu L, Shan G, Song E, Yao H, Hannon GJ, Weiss SJ, Wicha MS, Liu S: microRNA100 inhibits self‐renewal of breast cancer stem‐like cells and breast tumor development. Cancer Res 2014.
dc.identifier.citedreferenceLiu S, Patel SH, Ginestier C, Ibarra I, Martin‐Trevino R, Bai S, McDermott SP, Shang L, Ke J, Ou SJ, et al: MicroRNA93 regulates proliferation and differentiation of normal and malignant breast stem cells. PLoS Genet 2012, 8 ( 6 ): e1002751.
dc.identifier.citedreferenceGupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M‐C, Hung T, Argani P, Rinn JL, et al: Long non‐coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464 ( 7291 ): 1071 – 1076.
dc.identifier.citedreferenceKogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, et al: Long noncoding RNA HOTAIR regulates polycomb‐dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 2011, 71 ( 20 ): 6320 – 6326.
dc.identifier.citedreferencePádua Alves C, Fonseca AS, Muys BR, De Barros E Lima Bueno R, Bürger MC, De Souza JES, Valente V, Zago MA, Silva WA: Brief report: the lincrna hotair is required for epithelial‐to‐mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells 2013, 31 ( 12 ): 2827 – 2832.
dc.identifier.citedreferenceYildirim E, Kirby James E, Brown Diane E, Mercier Francois E, Sadreyev Ruslan I, Scadden David T, Lee Jeannie T: Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 2013, 152 ( 4 ): 727 – 742.
dc.identifier.citedreferenceAgostini F, Cirillo D, Bolognesi B, Tartaglia GG: X‐inactivation: quantitative predictions of protein interactions in the Xist network. Nucleic Acids Res 2012.
dc.identifier.citedreferenceSalvador MA, Wicinski J, Cabaud O, Toiron Y, Finetti P, Josselin E, Lelièvre H, Kraus‐Berthier L, Depil S, Bertucci F, et al: The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low xist expression. Clin Cancer Res 2013, 19 ( 23 ): 6520 – 6531.
dc.identifier.citedreferenceLiu S, Ginestier C, Charafe‐Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS: BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci 2008, 105 ( 5 ): 1680 – 1685.
dc.identifier.citedreferenceGanesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron A, Mok SC, Randrianarison V, Brodie S, Salstrom J, et al: BRCA1 Supports XIST RNA concentration on the Inactive X chromosome. Cell 2002, 111 ( 3 ): 393 – 405.
dc.identifier.citedreferenceØrom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al: Long noncoding RNAs with enhancer‐like function in human cells. Cell 2010, 143 ( 1 ): 46 – 58.
dc.identifier.citedreferenceGumireddy K, Li A, Yan J, Setoyama T, Johannes GJ, Orom UA, Tchou J, Liu Q, Zhang L, Speicher DW, et al: Identification of a long non‐coding RNA‐associated RNP complex regulating metastasis at the translational step. 2013, 32:.
dc.identifier.citedreferenceJi P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, et al: MALAT‐1, a novel noncoding RNA, and thymosin [beta]4 predict metastasis and survival in early‐stage non‐small cell lung cancer. Oncogene 2003, 22 ( 39 ): 8031 – 8041.
dc.identifier.citedreferenceYing L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F: Upregulated MALAT‐1 contributes to bladder cancer cell migration by inducing epithelial‐to‐mesenchymal transition. Mol Biosyst 2012, 8 ( 9 ): 2289 – 2294.
dc.identifier.citedreferenceMatouk IJ, Raveh E, Abu‐lail R, Mezan S, Gilon M, Gershtain E, Birman T, Gallula J, Schneider T, Barkali M, et al: Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta 2014, 1843 ( 7 ): 1414 – 1426.
dc.identifier.citedreferenceKallen Amanda N, Zhou X‐B, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi J‐S, Zhang H, et al: The imprinted H19 LncRNA Antagonizes Let‐7 MicroRNAs. Mol Cell 2013, 52 ( 1 ): 101 – 112.
dc.identifier.citedreferenceLoewer S, Cabili MN, Guttman M, Loh Y‐H, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, et al: Large intergenic non‐coding RNA‐RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 2010, 42 ( 12 ): 1113 – 1117.
dc.identifier.citedreferenceWang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H: Endogenous miRNA sponge lincRNA‐RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self‐renewal. Dev Cell 2013, 25 ( 1 ): 69 – 80.
dc.identifier.citedreferenceHou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y, Zhao L, Zhang Y, Huang B, Lu J: LincRNA‐ROR induces epithelial‐to‐mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis 2014, 5: e1287.
dc.identifier.citedreferenceJ‐h Y, Yang F, Wang F, Ma J‐z, Guo Y‐j, Tao Q‐f, Liu F, Pan W, Wang T‐t, Zhou C‐c, et al: A long noncoding RNA activated by TGF‐β promotes the invasion‐metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014, 25 ( 5 ): 666 – 681.
dc.identifier.citedreferenceLi C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res 2007, 67 ( 3 ): 1030 – 1037.
dc.identifier.citedreferenceMa S, Chan KW, Hu L, Lee TKW, Wo JYH, Ng IOL, Zheng BJ, Guan XY: Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2004, 132 ( 7 ): 2542 – 2556.
dc.identifier.citedreferenceMa S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A, Ng I, Man K, Wong N, To K‐F, et al: miR‐130b Promotes CD133+ liver tumor‐initiating cell growth and self‐renewal via tumor protein 53‐induced nuclear protein 1. Cell Stem Cell 2010, 7 ( 6 ): 694 – 707.
dc.identifier.citedreferenceWicha MS, Liu S, Dontu G: Cancer stem cells: an old idea–a paradigm shift. Cancer Res 2006, 66 ( 4 ): 1883 – 1890. discussion 1895–1886.
dc.identifier.citedreferenceLiu S, Wicha MS: Targeting breast cancer stem cells. J Clin Oncol 2010, 28 ( 25 ): 4006 – 4012.
dc.identifier.citedreferenceCharafe‐Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS: Cancer stem cells in breast: current opinion and future challenges. Pathobiology 2008, 75 ( 2 ): 75 – 84.
dc.identifier.citedreferenceLi X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, et al: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Nat Cancer Inst 2008, 100 ( 9 ): 672 – 679.
dc.identifier.citedreferencePhillips TM, McBride WH, Pajonk F: The response of CD24(‐/low)/CD44+ breast cancer‐initiating cells to radiation. J Nat Cancer Inst 2006, 98 ( 24 ): 1777 – 1785.
dc.identifier.citedreferenceShafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN, Stanbridge EJ, Lee EY: Cancer stem cells contribute to cisplatin resistance in Brca1/p53‐mediated mouse mammary tumors. Cancer Res 2008, 68 ( 9 ): 3243 – 3250.
dc.identifier.citedreferenceSheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat‐Nakshatri P, Turner CH, Goulet R Jr, Badve S, Nakshatri H: CD44+/CD24‐ breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 2006, 8 ( 5 ): R59.
dc.identifier.citedreferenceLiu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin‐Trevino R, Shang L, McDermott SP, Landis MD, et al: Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2014, 2 ( 1 ): 78 – 91.
dc.identifier.citedreferenceBeck B, Blanpain C: Unravelling cancer stem cell potential. Nat Rev Cancer 2013, 13 ( 10 ): 727 – 738.
dc.identifier.citedreferenceEnderling H, Hlatky L, Hahnfeldt P: Cancer stem cells: a minor cancer subpopulation that redefines global cancer features. Front Oncol 2013, 3.
dc.identifier.citedreferenceBonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3 ( 7 ): 730 – 737.
dc.identifier.citedreferenceAl‐Hajj M, Wicha MS, Benito‐Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proceed Nat Acad Sci 2003, 100 ( 7 ): 3983 – 3988.
dc.identifier.citedreferenceDontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003, 17 ( 10 ): 1253 – 1270.
dc.identifier.citedreferenceGinestier C, Hur MH, Charafe‐Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 Is a Marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1 ( 5 ): 555 – 567.
dc.identifier.citedreferenceSingh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature 2004, 432 ( 7015 ): 396 – 401.
dc.identifier.citedreferenceCollins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005, 65 ( 23 ): 10946 – 10951.
dc.identifier.citedreferencePatrawala L, Calhoun T, Schneider‐Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, et al: Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006, 25 ( 12 ): 1696 – 1708.
dc.identifier.citedreferenceO/’Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445 ( 7123 ): 106 – 110.
dc.identifier.citedreferenceKim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T: Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005, 121 ( 6 ): 823 – 835.
dc.identifier.citedreferencePrince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceed Nat Acad Sci 2007, 104 ( 3 ): 973 – 978.
dc.identifier.citedreferenceWoodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM: WNT/beta‐catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 2007, 104 ( 2 ): 618 – 623.
dc.identifier.citedreferenceTanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y, Noguchi S: Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin‐based chemotherapy for breast cancers. Clin Cancer Res 2009, 15 ( 12 ): 4234 – 4241.
dc.identifier.citedreferenceBrabletz T: To differentiate or not — routes towards metastasis. Nat Rev Cancer 2012, 12 ( 6 ): 425 – 436.
dc.identifier.citedreferenceDiehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009, 458 ( 7239 ): 780 – 783.
dc.identifier.citedreferenceZielske SP, Spalding AC, Wicha MS, Lawrence TS: Ablation of breast cancer stem cells with radiation. Translat Oncol 2011, 4 ( 4 ): 227 – 233.
dc.identifier.citedreferenceDean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer 2005, 5 ( 4 ): 275 – 284.
dc.identifier.citedreferenceStyczynski J, Drewa T: Leukemic stem cells: from metabolic pathways and signaling to a new concept of drug resistance targeting. Acta Biochim Pol 2007, 54: 717 – 726.
dc.identifier.citedreferenceZhou S, Schuetz JD, Bunting KD, Colapietro A‐M, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, et al: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side‐population phenotype. Nat Med 2001, 7 ( 9 ): 1028 – 1034.
dc.identifier.citedreferencePatrawala L, Calhoun T, Schneider‐Broussard R, Zhou J, Claypool K, Tang DG: Side population is enriched in tumorigenic, stem‐like cancer cells, whereas ABCG2+ and ABCG2– cancer cells are similarly tumorigenic. Cancer Res 2005, 65 ( 14 ): 6207 – 6219.
dc.identifier.citedreferenceAdhikari AS, Agarwal N, Wood BM, Porretta C, Ruiz B, Pochampally RR, Iwakuma T: CD117 and Stro‐1 Identify osteosarcoma tumor‐initiating cells associated with metastasis and drug resistance. Cancer Res 2010, 70 ( 11 ): 4602 – 4612.
dc.identifier.citedreferenceHermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007, 1 ( 3 ): 313 – 323.
dc.identifier.citedreferenceHu L, McArthur C, Jaffe RB: Ovarian cancer stem‐like side‐population cells are tumourigenic and chemoresistant. Br J Cancer 2010, 102 ( 8 ): 1276 – 1283.
dc.identifier.citedreferenceGutova M, Najbauer J, Gevorgyan A, Metz MZ, Weng Y, Shih C‐C, Aboody KS: Identification of uPAR‐positive chemoresistant cells in small cell lung cancer. PLoS One 2007, 2: e243.
dc.identifier.citedreferenceMaddox J, Shakya A, South S, Shelton D, Andersen JN, Chidester S, Kang J, Gligorich KM, Jones DA, Spangrude GJ, et al: Transcription factor Oct1 Is a somatic and cancer stem cell determinant. PLoS Genet 2012, 8 ( 11 ): e1003048.
dc.identifier.citedreferenceZhang M, Atkinson RL, Rosen JM: Selective targeting of radiation‐resistant tumor‐initiating cells. Proc Natl Acad Sci 2010, 107 ( 8 ): 3522 – 3527.
dc.identifier.citedreferenceHemmati HD, Nakano I, Lazareff JA, Masterman‐Smith M, Geschwind DH, Bronner‐Fraser M, Kornblum HI: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci 2003, 100 ( 25 ): 15178 – 15183.
dc.identifier.citedreferenceBao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444 ( 7120 ): 756 – 760.
dc.identifier.citedreferenceLendahl U, Zimmerman LB, McKay RDG: CNS stem cells express a new class of intermediate filament protein. Cell 1990, 60 ( 4 ): 585 – 595.
dc.identifier.citedreferenceSládek N, Kollander R, Sreerama L, Kiang D: Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide‐based chemotherapy of breast cancer: a retrospective study. Cancer Chemother Pharmacol 2002, 49 ( 4 ): 309 – 321.
dc.identifier.citedreferenceRaha D, Wilson TR, Peng J, Peterson D, Yue P, Evangelista M, Wilson C, Merchant M, Settleman J: The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug‐tolerant tumor cell subpopulation. Cancer Res 2014, 74 ( 13 ): 3579 – 3590.
dc.identifier.citedreferenceKlaus A, Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008, 8 ( 5 ): 387 – 398.
dc.identifier.citedreferenceGaston‐Massuet C, Andoniadou CL, Signore M, Jayakody SA, Charolidi N, Kyeyune R, Vernay B, Jacques TS, Taketo MM, Le Tissier P, et al: Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A 2011, 108 ( 28 ): 11482 – 11487.
dc.identifier.citedreferenceTakahashi‐Yanaga F, Kahn M: Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010, 16 ( 12 ): 3153 – 3162.
dc.identifier.citedreferencePode‐Shakked N, Harari‐Steinberg O, Haberman‐Ziv Y, Rom‐Gross E, Bahar S, Omer D, Metsuyanim S, Buzhor E, Jacob‐Hirsch J, Goldstein RS, et al: Resistance or sensitivity of Wilms/’ tumor to anti‐FZD7 antibody highlights the Wnt pathway as a possible therapeutic target. Oncogene 2011, 30 ( 14 ): 1664 – 1680.
dc.identifier.citedreferenceAgur Z, Kirnasovsky OU, Vasserman G, Tencer‐Hershkowicz L, Kogan Y, Harrison H, Lamb R, Clarke RB: Dickkopf1 regulates fate decision and drives breast cancer stem cells to differentiation: an experimentally supported mathematical model. PLoS One 2011, 6 ( 9 ): e24225.
dc.identifier.citedreferenceGupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES: Identification of selective inhibitors of cancer stem cells by high‐throughput screening. Cell 2009, 138 ( 4 ): 645 – 659.
dc.identifier.citedreferenceLu D, Choi MY, Yu J, Castro JE, Kipps TJ, Carson DA: Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci 2011, 108 ( 32 ): 13253 – 13257.
dc.identifier.citedreferenceTang S‐N, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK: Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 2012, 131 ( 1 ): 30 – 40.
dc.identifier.citedreferencePham P, Phan N, Nguyen N, Truong N, Duong T, Le D, Truong K, Phan N: Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med 2011, 9 ( 1 ): 209.
dc.identifier.citedreferenceVarnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, Ruiz i Altaba A: Human colon cancer epithelial cells harbour active HEDGEHOG‐GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 2009, 1 ( 6–7 ): 338 – 351.
dc.identifier.citedreferenceTakezaki T, Hide T, Takanaga H, Nakamura H, Kuratsu J‐I, Kondo T: Essential role of the Hedgehog signaling pathway in human glioma‐initiating cells. Cancer Sci 2011, 102 ( 7 ): 1306 – 1312.
dc.identifier.citedreferenceVon Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, et al: Inhibition of the Hedgehog pathway in advanced basal‐cell carcinoma. N Engl J Med 2009, 361 ( 12 ): 1164 – 1172.
dc.identifier.citedreferenceRudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould SE, Coleman B, et al: Treatment of medulloblastoma with Hedgehog pathway inhibitor GDC‐0449. N Engl J Med 2009, 361 ( 12 ): 1173 – 1178.
dc.identifier.citedreferenceYauch RL, Dijkgraaf GJP, Alicke B, Januario T, Ahn CP, Holcomb T, Pujara K, Stinson J, Callahan CA, Tang T, et al: Smoothened mutation confers resistance to a hedgehog pathway inhibitor in Medulloblastoma. Science 2009, 326 ( 5952 ): 572 – 574.
dc.identifier.citedreferenceFeldmann G, Fendrich V, McGovern K, Bedja D, Bisht S, Alvarez H, Koorstra J‐BM, Habbe N, Karikari C, Mullendore M, et al: An orally bioavailable small‐molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 2008, 7 ( 9 ): 2725 – 2735.
dc.identifier.citedreferenceMueller MT, Hermann PC, Witthauer J, Rubio–Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D’Haese JG, et al: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 2009, 137 ( 3 ): 1102 – 1113.
dc.identifier.citedreferenceLiu S, Dontu G, Mantle ID, Patel S, Ahn N‐S, Jackson KW, Suri P, Wicha MS: Hedgehog signaling and bmi‐1 regulate self‐renewal of normal and malignant human mammary stem cells. Cancer Res 2006, 66 ( 12 ): 6063 – 6071.
dc.identifier.citedreferenceWicha MS: Targeting self‐renewal, an Achilles’ heel of cancer stem cells. Nat Med 2014, 20 ( 1 ): 14 – 15.
dc.identifier.citedreferenceKreso A, Van Galen P, Pedley NM, Lima‐Fernandes E, Frelin C, Davis T, Cao L, Baiazitov R, Du W, Sydorenko N, et al: Self‐renewal as a therapeutic target in human colorectal cancer. Nat Med 2014, 20 ( 1 ): 29 – 36.
dc.identifier.citedreferenceWang Z, Li Y, Banerjee S, Sarkar FH: Emerging role of Notch in stem cells and cancer. Cancer Lett 2009, 279 ( 1 ): 8 – 12.
dc.identifier.citedreferenceBolós V, Grego‐Bessa J, Pompa JL: Notch signaling in development and cancer. Endocr Rev 2007, 28 ( 3 ): 339 – 363.
dc.identifier.citedreferenceWeng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez‐Irizarry C, Blacklow SC, Look AT, Aster JC: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004, 306 ( 5694 ): 269 – 271.
dc.identifier.citedreferenceDickson BC, Mulligan AM, Zhang H, Lockwood G, O’Malley FP, Egan SE, Reedijk M: High‐level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 2007, 20 ( 6 ): 685 – 693.
dc.identifier.citedreferenceReedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE: High‐level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 2005, 65 ( 18 ): 8530 – 8537.
dc.identifier.citedreferenceMagnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P, Sozzi G, Fontanella E, Menard S, Tagliabue E: Tumor‐initiating cells of HER2‐positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 2009, 15 ( 6 ): 2010 – 2021.
dc.identifier.citedreferenceFan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li Y‐M, Maciaczyk J, et al: NOTCH Pathway blockade depletes CD133‐Positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010, 28 ( 1 ): 5 – 16.
dc.identifier.citedreferenceDontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS: Role of Notch signaling in cell‐fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004, 6 ( 6 ): R605 – 615.
dc.identifier.citedreferenceKondratyev M, Kreso A, Hallett RM, Girgis‐Gabardo A, Barcelon ME, Ilieva D, Ware C, Majumder PK, Hassell JA: Gamma‐secretase inhibitors target tumor‐initiating cells in a mouse model of ERBB2 breast cancer. Oncogene 2012, 31 ( 1 ): 93 – 103.
dc.identifier.citedreferenceHarrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB: Regulation of breast cancer stem cell activity by signaling through the notch4 receptor. Cancer Res 2010, 70 ( 2 ): 709 – 718.
dc.identifier.citedreferenceHill R, Wu H: PTEN, Stem cells, and cancer stem cells. J Biol Chem 2009, 284 ( 18 ): 11755 – 11759.
dc.identifier.citedreferenceLi H, Gao Q, Guo L, Lu SH: The PTEN/PI3K/Akt pathway regulates stem‐like cells in primary esophageal carcinoma cells. Cancer Biol Ther 2011, 11 ( 11 ): 950 – 958.
dc.identifier.citedreferenceMoon SH, Kim DK, Cha Y, Jeon I, Song J, Park KS: PI3K/Akt and Stat3 signaling regulated by PTEN control of the cancer stem cell population, proliferation and senescence in a glioblastoma cell line. Int J Oncol 2013, 42 ( 3 ): 921 – 928.
dc.identifier.citedreferencePorta C, Paglino C, Mosca A: Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 2014, 4: 64.
dc.identifier.citedreferenceHambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova‐Todorova K, Holland EC: PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 2008, 22 ( 4 ): 436 – 448.
dc.identifier.citedreferenceMarinov M, Ziogas A, Pardo OE, Tan LT, Dhillon T, Mauri FA, Lane HA, Lemoine NR, Zangemeister‐Wittke U, Seckl MJ, et al: AKT/mTOR Pathway activation and BCL‐2 family proteins modulate the sensitivity of human small cell lung cancer cells to RAD001. Clin Cancer Res 2009, 15 ( 4 ): 1277 – 1287.
dc.identifier.citedreferencePardoll D: Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003, 21: 807 – 839.
dc.identifier.citedreferenceDunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD: Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol 2002, 3 ( 11 ): 991 – 998.
dc.identifier.citedreferenceZou W: Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005, 5 ( 4 ): 263 – 274.
dc.identifier.citedreferenceScheller J, Ohnesorge N, Rose‐John S: Interleukin‐6 trans‐signalling in chronic inflammation and cancer. Scand J Immunol 2006, 63 ( 5 ): 321 – 329.
dc.identifier.citedreferenceBromberg J, Wang TC: Inflammation and cancer: IL‐6 and STAT3 complete the link. Cancer Cell 2009, 15 ( 2 ): 79 – 80.
dc.identifier.citedreferenceMarotta LLC, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain‐Qimron N, Kim JJ, Choudhury SA, Maruyama R, et al: The JAK2/STAT3 signaling pathway is required for growth of CD44 + CD24– stem cell–like breast cancer cells in human tumors. J Clin Invest 2011, 121 ( 7 ): 2723 – 2735.
dc.identifier.citedreferenceKorkaya H, Liu S, Wicha MS: Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin Cancer Res 2011, 17 ( 19 ): 6125 – 6129.
dc.identifier.citedreferenceKorkaya H, Kim G‐i, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi Ahmed A, Tawakkol N, D’Angelo R, Paulson AK: Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 2012, 47 ( 4 ): 570 – 584.
dc.identifier.citedreferenceSethi N, Dai X, Winter CG, Kang Y: Tumor‐derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 2011, 19 ( 2 ): 192 – 205.
dc.identifier.citedreferenceGinestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe‐Jauffret E, Birnbaum D, et al: CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010, 120 ( 2 ): 485 – 497.
dc.identifier.citedreferenceLan K‐H, Lu C‐H, Yu DH: Mechanisms of trastuzumab resistance and their clinical implications. Ann N Y Acad Sci 2005, 1059 ( 1 ): 70 – 75.
dc.identifier.citedreferenceNagata Y, Lan K‐H, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, et al: PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004, 6 ( 2 ): 117 – 127.
dc.identifier.citedreferenceKim G, Ouzounova M, Quraishi AA, Davis A, Tawakkol N, Clouthier SG, Malik F, Paulson AK, D’Angelo RC, Korkaya S, et al: SOCS3‐mediated regulation of inflammatory cytokines in PTEN and p53 inactivated triple negative breast cancer model. Oncogene 2014,.
dc.identifier.citedreferenceBrosnan CA, Voinnet O: The long and the short of noncoding RNAs. Curr Opin Cell Biol 2009, 21 ( 3 ): 416 – 425.
dc.identifier.citedreferenceCalin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6 ( 11 ): 857 – 866.
dc.identifier.citedreferenceEis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE: Accumulation of miR‐155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 2005, 102 ( 10 ): 3627 – 3632.
dc.identifier.citedreferenceHe L, Thomson JM, Hemann MT, Hernando‐Monge E, Mu D, Goodson S, Powers S, Cordon‐Cardo C, Lowe SW, Hannon GJ, et al: A microRNA polycistron as a potential human oncogene. Nature 2005, 435 ( 7043 ): 828 – 833.
dc.identifier.citedreferenceCalin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down‐regulation of micro‐ RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 2002, 99 ( 24 ): 15524 – 15529.
dc.identifier.citedreferenceTakamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al: Reduced expression of the let‐7 MicroRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004, 64 ( 11 ): 3753 – 3756.
dc.identifier.citedreferencePichler M, Winter E, Stotz M, Eberhard K, Samonigg H, Lax S, Hoefler G: Down‐regulation of KRAS‐interacting miRNA‐143 predicts poor prognosis but not response to EGFR‐targeted agents in colorectal cancer. Br J Cancer 2012, 106 ( 11 ): 1826 – 1832.
dc.identifier.citedreferenceRicci‐Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R: Identification and expansion of human colon‐cancer‐initiating cells. Nature 2007, 445 ( 7123 ): 111 – 115.
dc.identifier.citedreferenceVan Roosbroeck K, Pollet J, Calin GA: miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn 2013, 13 ( 2 ): 183 – 204.
dc.identifier.citedreferenceCalin GA, Konopleva M: Small gene, big number, many effects. Blood 2012, 120 ( 2 ): 240 – 241.
dc.identifier.citedreferenceRinn JL, Chang HY: Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012, 81: 145 – 166.
dc.identifier.citedreferenceWilusz JE, Sunwoo H, Spector DL: Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009, 23 ( 13 ): 1494 – 1504.
dc.identifier.citedreferenceKorpal M, Lee ES, Hu G, Kang Y: The miR‐200 family inhibits epithelial‐mesenchymal transition and cancer cell migration by direct targeting of e‐cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008, 283 ( 22 ): 14910 – 14914.
dc.identifier.citedreferenceShimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, et al: Downregulation of miRNA‐200c links breast cancer stem cells with normal stem cells. Cell 2009, 138 ( 3 ): 592 – 603.
dc.identifier.citedreferenceChen J, Wang L, Matyunina LV, Hill CG, McDonald JF: Overexpression of miR‐429 induces mesenchymal‐to‐epithelial transition (MET) in metastatic ovarian cancer cells. Gynecol Oncol 2011, 121 ( 1 ): 200 – 205.
dc.identifier.citedreferenceIliopoulos D, Lindahl‐Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K: Loss of miR‐200 inhibition of Suz12 leads to polycomb‐mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010, 39 ( 5 ): 761 – 772.
dc.identifier.citedreferenceShimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, et al: Downregulation of miRNA‐200c links breast cancer stem cells with normal stem cells. Cell 2009, 138 ( 3 ): 592 – 603.
dc.identifier.citedreferenceLim Y, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, Thomas D, Drew PA, Khew‐Goodall Y, Goodall GJ: Epigenetic modulation of the miR‐200 family is associated with transition to a breast cancer stem cell‐like state. J Cell Sci 2013.
dc.identifier.citedreferenceYu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al: let‐7 Regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007, 131 ( 6 ): 1109 – 1123.
dc.identifier.citedreferenceYu F, Deng H, Yao H, Liu Q, Su F, Song E: Mir‐30 reduction maintains self‐renewal and inhibits apoptosis in breast tumor‐initiating cells. Oncogene 2010, 29 ( 29 ): 4194 – 4204.
dc.identifier.citedreferenceWang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K, Rankin‐Gee EK, Wang SE: Transforming growth factor‐[beta] regulates the sphere‐initiating stem cell‐like feature in breast cancer through miRNA‐181 and ATM. Oncogene 2011, 30 ( 12 ): 1470 – 1480.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.