Show simple item record

Upstream Ultra‐Low Frequency Waves Observed by MESSENGER’s Magnetometer: Implications for Particle Acceleration at Mercury’s Bow Shock

dc.contributor.authorRomanelli, N.
dc.contributor.authorDiBraccio, G.
dc.contributor.authorGershman, D.
dc.contributor.authorLe, G.
dc.contributor.authorMazelle, C.
dc.contributor.authorMeziane, K.
dc.contributor.authorBoardsen, S.
dc.contributor.authorSlavin, J.
dc.contributor.authorRaines, J.
dc.contributor.authorGlass, A.
dc.contributor.authorEspley, J.
dc.date.accessioned2020-06-03T15:23:01Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-06-03T15:23:01Z
dc.date.issued2020-05-16
dc.identifier.citationRomanelli, N.; DiBraccio, G.; Gershman, D.; Le, G.; Mazelle, C.; Meziane, K.; Boardsen, S.; Slavin, J.; Raines, J.; Glass, A.; Espley, J. (2020). "Upstream Ultra‐Low Frequency Waves Observed by MESSENGER’s Magnetometer: Implications for Particle Acceleration at Mercury’s Bow Shock." Geophysical Research Letters 47(9): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/155492
dc.description.abstractWe perform the first statistical analysis of the main properties of waves observed in the 0.05–0.41 Hz frequency range in the Hermean foreshock by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Magnetometer. Although we find similar polarization properties to the “30 s” waves observed at the Earth’s foreshock, the normalized wave amplitude (δB/|B0|∼0.2) and occurrence rate (∼0.5%) are much smaller. This could be associated with relatively lower backstreaming proton fluxes, the smaller foreshock size and/or less stable solar wind (SW) conditions around Mercury. Furthermore, we estimate that the speed of resonant backstreaming protons in the SW reference frame (likely source for these waves) ranges between 0.95 and 2.6 times the SW speed. The closeness between this range and what is observed at other planetary foreshocks suggests that similar acceleration processes are responsible for this energetic population and might be present in the shocks of exoplanets.Key PointsWe perform the first statistical analysis (4,536 events) of the main properties of the lowest‐frequency waves in the Hermean foreshockSmall normalized wave amplitude (0.2) and occurrence (0.5%) are likely due to low backstreaming proton flux and variable external conditionsThe normalized backstreaming protons speed (∼0.95–2.6) suggests similar acceleration processes occur at several planetary shocks
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Institute of Physics
dc.subject.othermagnetic field
dc.subject.otherbackstreaming ions
dc.subject.otherULF waves
dc.subject.otherforeshock
dc.subject.otherMercury
dc.subject.otherbow shock
dc.titleUpstream Ultra‐Low Frequency Waves Observed by MESSENGER’s Magnetometer: Implications for Particle Acceleration at Mercury’s Bow Shock
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155492/1/grl60476.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155492/2/grl60476_am.pdf
dc.identifier.doi10.1029/2020GL087350
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMeziane, K., Wilber, M., Mazelle, C., LeQuéau, D., Kucharek, H., Lucek, E. A., Rème, H., Hamza, A. M., Sauvaud, J. A., Bosqued, J. M., Dandouras, I., Parks, G. K., McCarthy, M., Klecker, B., Korth, A., Bavassano‐Cattaneo, M. B., & Lundin, R. N. ( 2004 ). Simultaneous observations of field‐aligned beams and gyrating ions in the Terrestrial foreshock. Journal of Geophysical Research, 109, A05107. https://doi.org/10.1029/2003JA010374
dc.identifier.citedreferenceFairfield, D. H., & Behannon, K. W. ( 1976 ). Bow Shock and magnetosheath waves at Mercury. Journal of Geophysical Research, 81 ( 22 ), 3897 – 3906. https://doi.org/10.1029/JA081i022p03897
dc.identifier.citedreferenceGary, S. P. ( 1978 ). The electromagnetic ion beam instability and energy loss of fast alpha particles. Nuclear fusion. 18, 327.
dc.identifier.citedreferenceGary, S. P. ( 1991 ). Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review. Space Science Reviews, 56, 373 – 415.
dc.identifier.citedreferenceGary, S. P. ( 1993 ). Theory of space plasma microinstabilities. Cambridge atmospheric and space series. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceGary, S. P., Akimoto, K., & Winske, D. ( 1989 ). Computer simulations of cometary‐ion/ion instabilities and wave growth. Journal of Geophysical Research, 94 ( A4 ), 3513 – 3525. https://doi.org/10.1029/JA094iA04p03513
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 118, 7181 – 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceGreenstadt, E., & Baum, L. ( 1986 ). Earth’s compressional foreshock boundary revisited: Observations by the ISEE 1 magnetometer. Journal of Geophysical Research, 91 ( A08 ), 9001 – 9006.
dc.identifier.citedreferenceGreenstadt, E. W., Green, I. M., Inouye, G. T., Hundhausen, A. J., Bame, S. J., & Strong, I. B. ( 1968 ). Correlated magnetic field and plasma observations of the Earth’s bow shock. Journal of Geophysical Research, 73 ( 1 ), 51 – 60. https://doi.org/10.1029/JA073i001p00051
dc.identifier.citedreferenceHoppe, M. M., & Russell, C. T. ( 1982 ). Particle acceleration at planetary bow shock waves. Nature, 295, 41.
dc.identifier.citedreferenceJarvinen, J., Alho, M., Kallio, E., & Pulkkinen, T. I. ( 2020 ). Ultra‐low frequency waves in the ion foreshock of Mercury: A global hybrid modeling study. Monthly Notices of the Royal Astronomical Society, 497, 4147 – 4161. https://doi.org/10.1093/mnras/stz3257
dc.identifier.citedreferenceJames, M. K., Imber, S. M., Bunce, E. J., Yeoman, T. K., Lockwood, M., Owens, M. J., & Slavin, J. A. ( 2017 ). Interplanetary magnetic field properties and variability near Mercury’s orbit. Journal of Geophysical Research: Space Physics, 122, 7907 – 7924. https://doi.org/10.1002/2017JA024435
dc.identifier.citedreferenceKennel, C. F., Edmiston, J. P., & Hada, T. ( 1985 ). A quarter century of collisionless shock research. In B. T. Tsurutani, & R. G. Stone (Eds.), Collisionless shocks in the heliosphere: A tutorial review (Vol.  34, pp. 1 ), Geophys. Monogr. Ser. Washington, DC: AGU.
dc.identifier.citedreferenceLe, G., Chi, P. J., Blanco‐Cano, X., Boardsen, S., Slavin, J. A., & Anderson, B. J. ( 2013 ). Upstream ultra‐low frequency waves in Mercury’s foreshock region: MESSENGER magnetic field observations. Journal of Geophysical Research: Space Physics, 118, 2809 – 2823. https://doi.org/10.1002/jgra.50342
dc.identifier.citedreferenceMasters, A., Slavin, J. A., DiBraccio, G. A., Sundberg, T., Winslow, R. M., Johnson, C. L., Anderson, B. J., & Korth, H. ( 2013 ). A comparison of magnetic overshoots at the bow shocks of Mercury and Saturn. Journal of Geophysical Research: Space Physics, 118, 4381 – 4390. https://doi.org/10.1002/jgra.50428
dc.identifier.citedreferenceMazelle, C., Le Queau, D., & Meziane, K. ( 2000 ). Nonlinear wave‐particle interaction upstream from the Earth’s bow shock. Nonlinear Processes in Geophysics, 77, 185 – 190.
dc.identifier.citedreferenceMazelle, C., Meziane, K., LeQueau, D., Wilber, M., Eastwood, J. P., Reme, H., Sauvaud, J. A., Bosqued, J. M., Dandouras, I., Mccarthy, M., Kistler, L. M., Klecker, B., Korth, A., Bavassano‐Cattaneo, M.‐B., Pallocchia, G., Lundin, R. N., & Balogh, A. ( 2003 ). Production of gyrating ions from nonlinear wave‐particle interaction upstream from the Earth’s bow shock: A case study from Cluster‐CIS. Planetary and Space Science, 51, 785 – 795.
dc.identifier.citedreferenceMeziane, K., & D’Uston, C. ( 1998 ). A statistical study of the upstream intermediate ion boundary in the Earth’s foreshock. Annals of Geophysics, 16, 125 – 133.
dc.identifier.citedreferenceMeziane, K., Mazelle, C. X., Romanelli, N., Mitchell, D. L., Espley, J. R., Connerney, J. E. P., Hamza, A. M., Halekas, J., McFadden, J. P., & Jakosky, B. M. ( 2017 ). Martian electron foreshock from MAVEN observations. Journal of Geophysical Research: Space Physics, 122, 1531 – 1541. https://doi.org/10.1002/2016JA023282.
dc.identifier.citedreferencePaschmann, G., Sckopke, N., Asbridge, J. R., Bame, S. J., & Gosling, J. T. ( 1980 ). Energization of solar wind ions by reflection from the Earth’s bow shock. Journal of Geophysical Research, 85 ( A9 ), 4689 – 4693. https://doi.org/10.1029/JA085iA09p04689
dc.identifier.citedreferenceRomanelli, N., Mazelle, C., Chaufray, J. Y., Meziane, K., Shan, L., Ruhunusiri, S., Connerney, J. E. P., Espley, J. R., Eparvier, F., Thiemann, E., Halekas, J. S., Mitchell, D. L., McFadden, J. P., Brain, D., & Jakosky, B. M. ( 2016 ). Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere. Journal of Geophysical Research: Space Physics, 11,113–11,128. https://doi.org/10.1002/2016JA023270
dc.identifier.citedreferenceRomanelli, N., Mazelle, C., & Meziane, K. ( 2018 ). Nonlinear wave‐particle interaction: Implications for newborn planetary and backstreaming proton velocity distribution functions. Journal of Geophysical Research: Space Physics, 123, 1100 – 1117. https://doi.org/10.1002/2017JA024691
dc.identifier.citedreferenceRussell, C. T., Hoppe, M. M., & Livesey, W. A. ( 1982 ). Overshoots in planetary bow shocks. Nature, 296, 45 – 48.
dc.identifier.citedreferenceShan, L., Mazelle, C., Meziane, K., Romanelli, N., Ge, Y. S., Du, A., & Zhang, T. ( 2018 ). The quasimonochromatic ULF wave boundary in the Venusian foreshock: Venus Express observations. Journal of Geophysical Research: Space Physics, 123, 374 – 384. https://doi.org/10.1002/2017JA024054
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1981 ). Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape. Journal of Geophysical Research, 86 ( A13 ), 11,401 – 11,418. https://doi.org/10.1029/JA086iA13p11401
dc.identifier.citedreferenceSlavin, J. A., Middleton, H. R., Raines, J. M., Jia, X., Zhong, J., Sun, W.‐J., Livi, S., Imber, S. M., Poh, G.‐K., Akhavan‐Tafti, M., Jasinski, J. Â. M., DiBraccio, G. A., Dong, C., Dewey, R. M., & Mays, M. L. ( 2019 ). MESSENGER observations of disappearing dayside magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 6613 – 6635. https://doi.org/10.1029/2019JA026892
dc.identifier.citedreferenceSolomon, S. C., McNutt, R. L. Jr., Gold, R. E., & Domingue, D. L. ( 2007 ). MESSENGER mission overview. Space Science Reviews, 131 ( 1‐4 ), 3 – 39. https://doi.org/10.1007/s11214-007-9247-6
dc.identifier.citedreferenceSong, P., & Russell, C. T. ( 1999 ). Time series data analyses in space plasmas. Space Science Reviews, 87, 387 – 463.
dc.identifier.citedreferenceSonnerup, B. U. O. ( 1969 ). Acceleration of particles reflected at a shock front. Journal of Geophysical Research, 74 ( 5 ), 1301 – 1304. https://doi.org/10.1029/JA074i005p01301
dc.identifier.citedreferenceSonnerup, B. U. O., & Scheible, M. ( 1998 ). Minimum and maximum variance analysis. In G. Paschmann, & P. Daly (Eds.), Analysis methods for multi‐spacecraft data (Vol.  1, pp. 185 – 220 ), ISSI Scientific Reports Series. Noordwijk, Netherlands: ESA Publications Division.
dc.identifier.citedreferenceWilson, L. B. ( 2016 ). Low frequency waves at and upstream of collisionless shocks, Low‐frequency waves in space plasmas (vol.  216, pp. 269 – 291 ), Geophysical Monograph Series. Hoboken, NJ: John Wiley. https://doi.org/10.1002/9781119055006.ch16
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N., & Solomon, S. C. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER observations. Journal of Geophysical Research: Space Physics, 118, 2213 – 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceAnderson, B. J., Acuna, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The Magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1–4 ), 417 – 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceAnderson,  B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr., Raines, J. M., & Zurbuchen, T. H. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 1859.
dc.identifier.citedreferenceAndrés, N., Meziane, K., Mazelle, C., Bertucci, C., & Gómez, C. ( 2015 ). The ULF wave foreshock boundary: Cluster observations. Journal of Geophysical Research: Space Physics, 120, 4181 – 4193. https://doi.org/10.1002/2014JA020783
dc.identifier.citedreferenceBenkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R., & Ziethe, R. ( 2010 ). Bepicolombo‐Comprehensive Exploration of Mercury: Mission overview and science goals, vol.  58, pp. 2 – 20. https://doi.org/10.1016/j.pss.2009.09.020
dc.identifier.citedreferenceBiskamp, D. ( 1973 ). Collisionless shock waves in plasmas. Nuclear Fusion, 13, 719.
dc.identifier.citedreferenceBlanco‐Cano, X., Kajdic, P., Aguilar‐ Rodríguez, E., Russell, C. T., Jian, L. K., & Luhmann, J. G.  ( 2016 ). Interplanetary shocks and foreshocks observed by STEREO during 2007–2010. Journal of Geophysical Research: Space Physics, 121, 992 – 1008. https://doi.org/10.1002/2015JA021645
dc.identifier.citedreferenceBlanco‐Cano, X., Kajdic, P., Aguilar‐Rodriguez, E., Russell, C. T., Jian, L. K., & Luhmann, J. G. ( 2013 ). STEREO observations of interplanetary shocks and foreshocks, Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conference. In N. V. Pogorelov, & G. P. Zank (Eds.), AIP Conf. Proc. 1539. New York: American Institute of Physics. https://doi.org/10.1063/1.4811005
dc.identifier.citedreferenceBrinca, A. ( 1991 ). Cometary linear instabilities: From profusion to perspective. Cometary plasma processes geophysical monograph (Vol.  61, pp. 211 – 221 ). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceBurgess, D., Mobius, E., & Scholer, M. ( 2012 ). Ion acceleration at the Earth’s bow shock. Space Science Reviews, 173, 5 – 47. https://doi.org/10.1007/s11214-012-9901-5
dc.identifier.citedreferenceEastwood, J. P., Lucek, E. A., Mazelle, C., Meziane, K., Narita, Y., Pickett, J., & Treumann, R. A.  ( 2005 ). The foreshock. Space Science Reviews, 118, 41 – 94.
dc.identifier.citedreferenceFairfield, D. H. ( 1974 ). Whistler waves observed upstream from collisionless shocks. Journal of Geophysical Research, 79 ( 10 ), 1368 – 1378. https://doi.org/10.1029/JA079i010p01368
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.