Show simple item record

Life history predicts flight muscle phenotype and function in birds

dc.contributor.authorDuBay, Shane G.
dc.contributor.authorWu, Yongjie
dc.contributor.authorScott, Graham R.
dc.contributor.authorQu, Yanhua
dc.contributor.authorLiu, Qiao
dc.contributor.authorSmith, Joel H.
dc.contributor.authorXin, Chao
dc.contributor.authorHart Reeve, Andrew
dc.contributor.authorJuncheng, Chen
dc.contributor.authorMeyer, Dylan
dc.contributor.authorWang, Jing
dc.contributor.authorJohnson, Jacob
dc.contributor.authorCheviron, Zachary A.
dc.contributor.authorLei, Fumin
dc.contributor.authorBates, John
dc.date.accessioned2020-06-03T15:23:06Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-06-03T15:23:06Z
dc.date.issued2020-05
dc.identifier.citationDuBay, Shane G.; Wu, Yongjie; Scott, Graham R.; Qu, Yanhua; Liu, Qiao; Smith, Joel H.; Xin, Chao; Hart Reeve, Andrew; Juncheng, Chen; Meyer, Dylan; Wang, Jing; Johnson, Jacob; Cheviron, Zachary A.; Lei, Fumin; Bates, John (2020). "Life history predicts flight muscle phenotype and function in birds." Journal of Animal Ecology 89(5): 1262-1276.
dc.identifier.issn0021-8790
dc.identifier.issn1365-2656
dc.identifier.urihttps://hdl.handle.net/2027.42/155496
dc.description.abstractFunctional traits are the essential phenotypes that underlie an organism’s life history and ecology. Although biologists have long recognized that intraspecific variation is consequential to an animals’ ecology, studies of functional variation are often restricted to species‐level comparisons, ignoring critical variation within species. In birds, interspecific comparisons have been foundational in connecting flight muscle phenotypes to species‐level ecology, but intraspecific variation has remained largely unexplored.We asked how age‐ and sex‐dependent demands on flight muscle function are reconciled in birds. The flight muscle is an essential multifunctional organ, mediating a large range of functions associated with powered flight and thermoregulation. These functions must be balanced over an individual’s lifetime.We leveraged within‐ and between‐species comparisons in a clade of small passerines (Tarsiger bush‐robins) from the eastern edge of the Qinghai–Tibet Plateau. We integrated measurements of flight muscle physiology, morphology, behaviour, phenology and environmental data, analysing trait data within a context of three widespread, adaptive life‐history strategies—sexual dichromatism, age and sex‐structured migration, and delayed plumage maturation. This approach provides a framework of the selective forces that shape functional variation within and between species.We found more variation in flight muscle traits within species than has been previously described between species of birds under 20 g. This variation was associated with the discovery of mixed muscle fibre types (i.e. both fast glycolytic and fast oxidative fibres), which differ markedly in their physiological and functional attributes. This result is surprising given that the flight muscles of small birds are generally thought to contain only fast oxidative fibres, suggesting a novel ecological context for glycolytic muscle fibres in small birds. Within each species, flight muscle phenotypes varied by age and sex, reflecting the functional demands at different life‐history stages and the pressures that individuals face as a result of their multi‐class identity (i.e. species, age and sex).Our findings reveal new links between avian physiology, ecology, behaviour and life history, while demonstrating the importance of demographic‐dependent selection in shaping functional phenotypic variation.The authors found more variation in avian flight muscle traits within species of Tarsiger bush‐robins than has been previously described between other species of small birds. This variation was associated with the discovery of mixed fibre types (glycolytic and oxidative) in the flight muscle of all three study taxa, suggesting a novel ecological context for glycolytic fibres in small birds.
dc.publisherWiley Periodicals, Inc.
dc.publisherLynx Edicions
dc.subject.otherphysiology
dc.subject.otherseasonal migration
dc.subject.otherintraspecific variation
dc.subject.otherfunctional traits
dc.subject.otherphenology
dc.subject.otheranimal behaviour
dc.subject.otherphenotypic variation
dc.titleLife history predicts flight muscle phenotype and function in birds
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155496/1/jane13190.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155496/2/jane13190_am.pdf
dc.identifier.doi10.1111/1365-2656.13190
dc.identifier.sourceJournal of Animal Ecology
dc.identifier.citedreferenceRaveling, D. G. ( 1979 ). The annual cycle of body composition of Canada Geese with special reference to control of reproduction. The Auk, 96 ( 2 ), 234 – 252.
dc.identifier.citedreferenceHawkins, G. L., Hill, G. E., & Mercadante, A. ( 2012 ). Delayed plumage maturation and delayed reproductive investment in birds. Biological Reviews, 87 ( 2 ), 257 – 274. https://doi.org/10.1111/j.1469‐185X.2011.00193.x
dc.identifier.citedreferenceHerreid II, C. F., & Kessel, B. ( 1967 ). Thermal conductance in birds and mammals. Comparative Biochemistry and Physiology, 21 ( 2 ), 405 – 414. https://doi.org/10.1016/0010‐406X(67)90802‐X
dc.identifier.citedreferenceHsiung, A. C., Boyle, W. A., Cooper, R. J., & Chandler, R. B. ( 2018 ). Altitudinal migration: Ecological drivers, knowledge gaps, and conservation implications. Biological Reviews, 93 ( 4 ), 2049 – 2070. https://doi.org/10.1111/brv.12435
dc.identifier.citedreferenceJakobsson, S., Brick, O., & Kullberg, C. ( 1995 ). Escalated fighting behaviour incurs increased predation risk. Animal Behaviour, 49 ( 1 ), 235 – 239. https://doi.org/10.1016/0003‐3472(95)80172‐3
dc.identifier.citedreferenceJones, M. R., Mills, L. S., Alves, P. C., Callahan, C. M., Alves, J. M., Lafferty, D. J., … Good, J. M. ( 2018 ). Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science, 360 ( 6395 ), 1355 – 1358.
dc.identifier.citedreferenceKetterson, E. D., & Nolan, V. A. L. ( 1983 ). The evolution of differential bird migration. In Current ornithology (pp. 357 – 402 ). Boston, MA: Springer.
dc.identifier.citedreferenceKipp, F. A. ( 1959 ). Der Handflügel‐Index als flugbiologisches Maß. Vogelwarte, 20 ( 2 ), 77 – 86.
dc.identifier.citedreferenceLockwood, R., Swaddle, J. P., & Rayner, J. M. ( 1998 ). Avian wingtip shape reconsidered: Wingtip shape indices and morphological adaptations to migration. Journal of Avian Biology, 273 – 292. https://doi.org/10.2307/3677110
dc.identifier.citedreferenceLozano, G. A., Perreault, S., & Lemon, R. E. ( 1996 ). Age, arrival date and reproductive success of male American redstarts Setophaga ruticilla. Journal of Avian Biology, 27 ( 2 ), 164 – 170. https://doi.org/10.2307/3677146
dc.identifier.citedreferenceLundgren, B. O., & Kiessling, K. H. ( 1988 ). Comparative aspects of fibre types, areas, and capillary supply in the pectoralis muscle of some passerine birds with differing migratory behaviour. Journal of Comparative Physiology B, 158 ( 2 ), 165 – 173. https://doi.org/10.1007/BF01075830
dc.identifier.citedreferenceLyon, B. E., & Montgomerie, R. D. ( 1986 ). Delayed plumage maturation in passerine birds: Reliable signaling by subordinate males? Evolution, 40 ( 3 ), 605 – 615.
dc.identifier.citedreferenceMarsh, R. L., & Dawson, W. R. ( 1989 ). Avian adjustments to cold. In Animal adaptation to cold (pp. 205 – 253 ). Berlin, Heidelberg: Springer.
dc.identifier.citedreferenceMcClelland, G. B., & Scott, G. R. ( 2019 ). Evolved mechanisms of aerobic performance and hypoxia resistance in high‐altitude natives. Annual Review of Physiology, 81, 561 – 583. https://doi.org/10.1146/annurev‐physiol‐021317‐121527
dc.identifier.citedreferenceMeyers, R. A., & Stakebake, E. F. ( 2005 ). Anatomy and histochemistry of spread‐wing posture in birds. 3. Immunohistochemistry of flight muscles and the “shoulder lock” in albatrosses. Journal of Morphology, 263 ( 1 ), 12 – 29. https://doi.org/10.1002/jmor.10284
dc.identifier.citedreferenceMorbey, Y. E., & Ydenberg, R. C. ( 2001 ). Protandrous arrival timing to breeding areas: A review. Ecology Letters, 4 ( 6 ), 663 – 673.
dc.identifier.citedreferenceMorimoto, G., Yamaguchi, N., & Ueda, K. ( 2006 ). Plumage color as a status signal in male–male interaction in the red‐flanked bushrobin, Tarsiger cyanurus. Journal of Ethology, 24 ( 3 ), 261 – 266. https://doi.org/10.1007/s10164‐005‐0187‐x
dc.identifier.citedreferenceMyers, J. P. ( 1981 ). A test of three hypotheses for latitudinal segregation of the sexes in wintering birds. Canadian Journal of Zoology, 59 ( 8 ), 1527 – 1534. https://doi.org/10.1139/z81‐207
dc.identifier.citedreferencePerrins, C. M. ( 1970 ). The timing of birds ‘breeding seasons. Ibis, 112 ( 2 ), 242 – 255. https://doi.org/10.1111/j.1474‐919x.1970.tb00096.x
dc.identifier.citedreferencePeter, J. B., Barnard, R. J., Edgerton, V. R., Gillespie, C. A., & Stempel, K. E. ( 1972 ). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry, 11 ( 14 ), 2627 – 2633. https://doi.org/10.1021/bi00764a013
dc.identifier.citedreferencePetit, M., & Vézina, F. ( 2014 ). Phenotype manipulations confirm the role of pectoral muscles and haematocrit in avian maximal thermogenic capacity. Journal of Experimental Biology, 217 ( 6 ), 824 – 830. https://doi.org/10.1242/jeb.095703
dc.identifier.citedreferenceRayner, J. M. ( 1988 ). Form and function in avian flight. In R. F. Johnston (Ed.), Current ornithology (pp. 1 – 66 ). Boston, MA: Springer.
dc.identifier.citedreferenceRohwer, S. ( 1982 ). The evolution of reliable and unreliable badges of fighting ability. American Zoologist, 22 ( 3 ), 531 – 546. https://doi.org/10.1093/icb/22.3.531
dc.identifier.citedreferenceRosser, B. W., & George, J. C. ( 1986 ). The avian pectoralis: Histochemical characterization and distribution of muscle fiber types. Canadian Journal of Zoology, 64 ( 5 ), 1174 – 1185. https://doi.org/10.1139/z86‐176
dc.identifier.citedreferenceRosser, B. W., Waldbillig, D. M., Wick, M., & Bandman, E. ( 1994 ). Muscle fiber types in the pectoralis of the white pelican, a soaring bird. Acta Zoologica, 75 ( 4 ), 329 – 336. https://doi.org/10.1111/j.1463‐6395.1994.tb00970.x
dc.identifier.citedreferenceSangster, G., Alström, P., Forsmark, E., & Olsson, U. ( 2010 ). Multi‐locus phylogenetic analysis of Old World chats and flycatchers reveals extensive paraphyly at family, subfamily and genus level (Aves: Muscicapidae). Molecular Phylogenetics and Evolution, 57 ( 1 ), 380 – 392. https://doi.org/10.1016/j.ympev.2010.07.008
dc.identifier.citedreferenceScott, G. R., Egginton, S., Richards, J. G., & Milsom, W. K. ( 2009 ). Evolution of muscle phenotype for extreme high altitude flight in the bar‐headed goose. Proceedings of the Royal Society B: Biological Sciences, 276 ( 1673 ), 3645 – 3653. https://doi.org/10.1098/rspb.2009.0947
dc.identifier.citedreferenceSegre, P. S., Dakin, R., Zordan, V. B., Dickinson, M. H., Straw, A. D., & Altshuler, D. L. ( 2015 ). Burst muscle performance predicts the speed, acceleration, and turning performance of Anna’s hummingbirds. eLife, 4. https://doi.org/10.7554/eLife.11159
dc.identifier.citedreferenceStager, M., Swanson, D. L., & Cheviron, Z. A. ( 2015 ). Regulatory mechanisms of metabolic flexibility in the dark‐eyed junco ( Junco hyemalis ). Journal of Experimental Biology, 218 ( 5 ), 767 – 777. https://doi.org/10.1242/jeb.113472
dc.identifier.citedreferenceStorz, J. F. ( 2018 ). Hemoglobin: Insights into protein structure, function, and evolution. New York, NY: Oxford University Press.
dc.identifier.citedreferenceStorz, J. F., & Scott, G. R. ( 2019 ). Life ascending: Mechanism and process in physiological adaptation to high‐altitude hypoxia. Annual Review of Ecology, Evolution, and Systematics, 50 ( 1 ), 503 – 526. https://doi.org/10.1146/annurev‐ecolsys‐110218‐025014
dc.identifier.citedreferenceStudds, C. E., & Marra, P. P. ( 2005 ). Nonbreeding habitat occupancy and population processes: An upgrade experiment with a migratory bird. Ecology, 86 ( 9 ), 2380 – 2385. https://doi.org/10.1890/04‐1145
dc.identifier.citedreferenceSwanson, D. L., Zhang, Y., & King, M. O. ( 2013 ). Individual variation in thermogenic capacity is correlated with flight muscle size but not cellular metabolic capacity in American goldfinches ( Spinus tristis ). Physiological and Biochemical Zoology, 86 ( 4 ), 421 – 431. https://doi.org/10.1086/671447
dc.identifier.citedreferenceViolle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. ( 2007 ). Let the concept of trait be functional! Oikos, 116 ( 5 ), 882 – 892. https://doi.org/10.1111/j.0030‐1299.2007.15559.x
dc.identifier.citedreferenceWedell, N., Kvarnemo, C., & Tregenza, T. ( 2006 ). Sexual conflict and life histories. Animal Behaviour, 71 ( 5 ), 999 – 1011.
dc.identifier.citedreferenceWelch Jr, K. C., & Altshuler, D. L. ( 2009 ). Fiber type homogeneity of the flight musculature in small birds. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 152 ( 4 ), 324 – 331. https://doi.org/10.1016/j.cbpb.2008.12.013
dc.identifier.citedreferenceWright, N. A., Steadman, D. W., & Witt, C. C. ( 2016 ). Predictable evolution toward flightlessness in volant island birds. Proceedings of the National Academy of Sciences of the United State of America, 113 ( 17 ), 4765 – 4770. https://doi.org/10.1073/pnas.1522931113
dc.identifier.citedreferenceZhu, X., Guan, Y., Signore, A. V., Natarajan, C., DuBay, S. G., Cheng, Y., … Storz, J. F. et al. ( 2018 ). Divergent and parallel routes of biochemical adaptation in high‐altitude passerine birds from the Qinghai‐Tibet Plateau. Proceedings of the National Academy of Sciences of the United State of America, 115 ( 8 ), 1865 – 1870. https://doi.org/10.1073/pnas.1720487115
dc.identifier.citedreferenceAltshuler, D. L. ( 2005 ). Flight performance and competitive displacement of hummingbirds across elevational gradients. The American Naturalist, 167 ( 2 ), 216 – 229. https://doi.org/10.1086/498622
dc.identifier.citedreferenceArcese, P., & Smith, J. N. M. ( 1985 ). Phenotypic correlates and ecological consequences of dominance in song sparrows. Journal of Animal Ecology, 54 ( 3 ), 817 – 830. https://doi.org/10.2307/4380
dc.identifier.citedreferenceAskew, G. N., Marsh, R. L., & Ellington, C. P. ( 2001 ). The mechanical power output of the flight muscles of blue‐breasted quail ( Coturnix chinensis ) during take‐off. Journal of Experimental Biology, 204 ( 21 ), 3601 – 3619.
dc.identifier.citedreferenceBiewener, A. A., Dial, K. P., & Goslow, G. E. ( 1992 ). Pectoralis muscle force and power output during flight in the starling. Journal of Experimental Biology, 164 ( 1 ), 1 – 18.
dc.identifier.citedreferenceBolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., … Vasseur, D. A. ( 2011 ). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26 ( 4 ), 183 – 192. https://doi.org/10.1016/j.tree.2011.01.009
dc.identifier.citedreferenceBoyle, W. A. ( 2017 ). Altitudinal bird migration in North America. The Auk: Ornithological Advances, 134 ( 2 ), 443 – 465. https://doi.org/10.1642/AUK‐16‐228.1
dc.identifier.citedreferenceDakin, R., Segre, P. S., Straw, A. D., & Altshuler, D. L. ( 2018 ). Morphology, muscle capacity, skill, and maneuvering ability in hummingbirds. Science, 359 ( 6376 ), 653 – 657. https://doi.org/10.1126/science.aao7104
dc.identifier.citedreferenceDawson, W. R., Marsh, R. L., & Yacoe, M. E. ( 1983 ). Metabolic adjustments of small passerine birds for migration and cold. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 245 ( 6 ), R755 – R767. https://doi.org/10.1152/ajpregu.1983.245.6.R755
dc.identifier.citedreferencedel Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A., & de Juana, E. ( 2005 ). Handbook of the Birds of the World Alive. Barcelona: Lynx Edicions.
dc.identifier.citedreferenceDeveci, D., Marshall, J. M., & Egginton, S. ( 2001 ). Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. American Journal of Physiology‐Heart and Circulatory Physiology, 281 ( 1 ), H241 – H252. https://doi.org/10.1152/ajpheart.2001.281.1.H241
dc.identifier.citedreferenceDial, K. P., Kaplan, S. R., Goslow, G. E., & Jenkins, F. A. ( 1987 ). Structure and neural control of the pectoralis in pigeons: Implications for flight mechanics. The Anatomical Record, 218 ( 3 ), 284 – 287. https://doi.org/10.1002/ar.1092180309
dc.identifier.citedreferenceDuBay, S. G., Wu, Y., Scott, G. R., Qu, Y., Liu, Q., Smith, J. H., … Bates, J. ( 2020 ). Data from: Life history predicts flight muscle phenotype and function in birds. Dryad Digital Repository, https://doi.org/10.5061/dryad.jsxksn05s
dc.identifier.citedreferenceEgginton, S. ( 1990 ). Morphometric analysis of tissue capillary supply. In R. G. Boutilier (Ed.), Vertebrate gas exchange (pp. 73 – 141 ). Berlin, Heidelberg: Springer.
dc.identifier.citedreferenceGötmark, F. ( 1993 ). Conspicuous coloration in male birds is favoured by predation in some species and disfavoured in others. Proceedings of the Royal Society of London. Series B: Biological Sciences, 253 ( 1337 ), 143 – 146. https://doi.org/10.1098/rspb.1993.0094
dc.identifier.citedreferenceGrant, P. R., & Grant, B. R. ( 2002 ). Unpredictable evolution in a 30‐year study of Darwin’s finches. Science, 296 ( 5568 ), 707 – 711.
dc.identifier.citedreferenceGriffiths, R., Daan, S., & Dijkstra, C. ( 1996 ). Sex identification in birds using two CHD genes. Proceedings of the Royal Society of London, Series B: Biological Sciences, 263 ( 1374 ), 1251 – 1256. https://doi.org/10.1098/rspb.1996.0184
dc.identifier.citedreferenceHarrison, X. A., Blount, J. D., Inger, R., Norris, D. R., & Bearhop, S. ( 2011 ). Carry‐over effects as drivers of fitness differences in animals. Journal of Animal Ecology, 80 ( 1 ), 4 – 18. https://doi.org/10.1111/j.1365‐2656.2010.01740.x
dc.identifier.citedreferenceHawkes, L. A., Balachandran, S., Batbayar, N., Butler, P. J., Frappell, P. B., & Milsom, W. K., … Bishop, C. M. ( 2011 ). The trans‐Himalayan flights of bar‐headed geese ( Anser indicus ). Proceedings of the National Academy of Sciences of the United State of America, 108 ( 23 ), 9516 – 9519. https://doi.org/10.1073/pnas.1017295108
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.