Show simple item record

High‐Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels

dc.contributor.authorSzklanny, Ariel A.
dc.contributor.authorDebbi, Lior
dc.contributor.authorMerdler, Uri
dc.contributor.authorNeale, Dylan
dc.contributor.authorMu�iz, Ayse
dc.contributor.authorKaplan, Ben
dc.contributor.authorGuo, Shaowei
dc.contributor.authorLahann, Joerg
dc.contributor.authorLevenberg, Shulamit
dc.date.accessioned2020-06-03T15:23:14Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-06-03T15:23:14Z
dc.date.issued2020-05
dc.identifier.citationSzklanny, Ariel A.; Debbi, Lior; Merdler, Uri; Neale, Dylan; Mu�iz, Ayse ; Kaplan, Ben; Guo, Shaowei; Lahann, Joerg; Levenberg, Shulamit (2020). "High‐Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels." Advanced Functional Materials 30(18): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/155501
dc.description.abstractLive tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two‐step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time‐lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues.A novel two‐step cell seeding on tesselated scaffolds produces highly organized and oriented vessel networks. Different compartment shapes promote vessel sprouting with specific orientations according to the compartment geometry and encourage distinct support cell distributions. Vessels depart from areas with low support cell concentration (side between corners) and are drawn to areas with higher concentration of support cells (corners).
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhigh throughput analysis
dc.subject.othervascular development
dc.subject.othercompartment geometry
dc.subject.othertissue engineering
dc.subject.othersprouting
dc.titleHigh‐Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155501/1/adfm201901335-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155501/2/adfm201901335.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155501/3/adfm201901335_am.pdf
dc.identifier.doi10.1002/adfm.201901335
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceJ. Rouwkema, A. Khademhosseini, Trends Biotechnol. 2016, 34, 733.
dc.identifier.citedreferenceN. C. Rivron, E. J. Vrij, J. Rouwkema, S. Le Gac, A. van den Berg, R. K. Truckenmuller, C. A. van Blitterswijk, Proc. Natl. Acad. Sci. USA 2012, 109, 6886.
dc.identifier.citedreferenceR. Gauvin, Y.‐C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, A. Khademhosseini, Biomaterials 2012, 33, 3824.
dc.identifier.citedreferenceS. Coscoy, S. Baiz, J. Octon, B. Rhoné, L. Perquis, Q. Tseng, F. Amblard, V. Semetey, Biointerphases 2018, 13, 041003.
dc.identifier.citedreferenceJ. H. Jordahl, L. Solorio, H. Sun, S. Ramcharan, C. B. Teeple, H. R. Haley, K. J. Lee, T. W. Eyster, G. D. Luker, P. H. Krebsbach, J. Lahann, Adv. Mater. 2018, 30, 1707196.
dc.identifier.citedreferenceR. J. Klebe, K. L. Bentley, R. C. Schoen, J. Cell. Physiol. 1981, 109, 481.
dc.identifier.citedreferenceY. J. Blinder, A. Freiman, N. Raindel, D. J. Mooney, S. Levenberg, Sci. Rep. 2016, 5, 17840.
dc.identifier.citedreferenceE. Zudaire, L. Gambardella, C. Kurcz, S. Vermeren, PLoS One 2011, 6, e27385.
dc.identifier.citedreferenceH. B. M. Uylings, Bull. Math. Biol. 1977, 39, 509.
dc.identifier.citedreferenceI. A. Lubashevsky, V. V. Gafiychuk, 1999, arXiv preprint adap‐org/9909003.
dc.identifier.citedreferenceA. Chauviere, L. Preziosi, T. Hillen, Networks Heterog. Media 2007, 2, 333.
dc.identifier.citedreferenceH. El‐Mohri, Y. Wu, S. Mohanty, G. Ghosh, Mater. Sci. Eng., C 2017, 74, 146.
dc.identifier.citedreferenceM. Guthold, W. Liu, E. A. Sparks, L. M. Jawerth, L. Peng, M. Falvo, R. Superfine, R. R. Hantgan, S. T. Lord, Cell Biochem. Biophys. 2007, 49, 165.
dc.identifier.citedreferenceK. Okeyo, H. Kotera, M. Washizu, μTAS Proc. 2013, 17, 27.
dc.identifier.citedreferenceK. A. Jansen, R. G. Bacabac, I. K. Piechocka, G. H. Koenderink, Biophys. J. 2013, 105, 2240.
dc.identifier.citedreferenceJ. Welti, S. Loges, S. Dimmeler, P. Carmeliet, J. Clin. Invest. 2013, 123, 3190.
dc.identifier.citedreferenceM. Nikkhah, N. Eshak, P. Zorlutuna, N. Annabi, M. Castello, K. Kim, A. Dolatshahi‐Pirouz, F. Edalat, H. Bae, Y. Yang, A. Khademhosseini, Biomaterials 2012, 33, 9009.
dc.identifier.citedreferenceS. R. Caliari, J. A. Burdick, Nat. Methods 2016, 13, 405.
dc.identifier.citedreferenceS. J. Hollister, Nat. Mater. 2006, 5, 590.
dc.identifier.citedreferenceM. Potente, H. Gerhardt, P. Carmeliet, Cell 2011, 146, 873.
dc.identifier.citedreferenceM. J. Wilmer, C. P. Ng, H. L. Lanz, P. Vulto, L. Suter‐Dick, R. Masereeuw, Trends Biotechnol. 2016, 34, 156.
dc.identifier.citedreferenceV. L. Tsang, A. A. Chen, L. M. Cho, K. D. Jadin, R. L. Sah, S. DeLong, J. L. West, S. N. Bhatia, FASEB J. 2007, 21, 790.
dc.identifier.citedreferenceA. Panwar, L. P. Tan, Molecules 2016, 21, 685.
dc.identifier.citedreferenceA. Scarano, V. Perrotti, L. Artese, M. Degidi, D. Degidi, A. Piattelli, G. Iezzi, Odontology 2014, 102, 259.
dc.identifier.citedreferenceB. A. Juliar, M. T. Keating, Y. P. Kong, E. L. Botvinick, A. J. Putnam, Biomaterials 2018, 162, 99.
dc.identifier.citedreferenceT. Takebe, M. Enomura, E. Yoshizawa, M. Kimura, H. Koike, Y. Ueno, T. Matsuzaki, T. Yamazaki, T. Toyohara, K. Osafune, H. Nakauchi, H. Y. Yoshikawa, H. Taniguchi, Cell Stem Cell 2015, 16, 556.
dc.identifier.citedreferenceA. W. Feinberg, P. W. Alford, H. Jin, C. M. Ripplinger, A. A. Werdich, S. P. Sheehy, A. Grosberg, K. K. Parker, Biomaterials 2012, 33, 5732.
dc.identifier.citedreferenceS. Levenberg, J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. van Blitterswijk, R. C. Mulligan, P. A. D’Amore, R. Langer, Nat. Biotechnol. 2005, 23, 879.
dc.identifier.citedreferenceD. Rosenfeld, S. Landau, Y. Shandalov, N. Raindel, A. Freiman, E. Shor, Y. Blinder, H. H. Vandenburgh, D. J. Mooney, S. Levenberg, Proc. Natl. Acad. Sci. USA 2016, 113, 3215.
dc.identifier.citedreferenceB. Kaehr, J. L. Townson, R. M. Kalinich, Y. H. Awad, B. S. Swartzentruber, D. R. Dunphy, C. J. Brinker, Proc. Natl. Acad. Sci. USA 2012, 109, 17336.
dc.identifier.citedreferenceE. C. Novosel, C. Kleinhans, P. J. Kluger, Adv. Drug Delivery Rev. 2011, 63, 300.
dc.identifier.citedreferenceS. Landau, A. A. Szklanny, G. C. Yeo, Y. Shandalov, E. Kosobrodova, A. S. Weiss, S. Levenberg, Biomaterials 2017, 122, 72.
dc.identifier.citedreferenceA. Lesman, J. Koffler, R. Atlas, Y. J. Blinder, Z. Kam, S. Levenberg, Biomaterials 2011, 32, 7856.
dc.identifier.citedreferenceS. Landau, S. Guo, S. Levenberg, Front. Bioeng. Biotechnol. 2018, 6, 2.
dc.identifier.citedreferenceY. J. Blinder, D. J. Mooney, S. Levenberg, Curr. Opin. Chem. Eng. 2014, 3, 56.
dc.identifier.citedreferenceD. Richards, J. Jia, M. Yost, R. Markwald, Y. Mei, Ann. Biomed. Eng. 2017, 45, 132.
dc.identifier.citedreferenceM. I. Gariboldi, R. Butler, S. M. Best, R. E. Cameron, PLoS One 2019, 14, e0210390.
dc.identifier.citedreferenceJ. A. Henry, K. Burugapalli, P. Neuenschwander, A. Pandit, Acta Biomater. 2009, 5, 29.
dc.identifier.citedreferenceS. Raghavan, C. M. Nelson, J. D. Baranski, E. Lim, C. S. Chen, Tissue Eng., Part A 2010, 16, 2255.
dc.identifier.citedreferenceJ. Sun, N. Jamilpour, F. Y. Wang, P. K. Wong, Biomaterials 2014, 35, 3273.
dc.identifier.citedreferenceP. Bose, J. Eyckmans, T. D. Nguyen, C. S. Chen, D. H. Reich, ACS Biomater. Sci. Eng. 2018, https://doi.org/10.1021/acsbiomaterials.8b01183.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.