Show simple item record

Machine learning for radiation outcome modeling and prediction

dc.contributor.authorLuo, Yi
dc.contributor.authorChen, Shifeng
dc.contributor.authorValdes, Gilmer
dc.date.accessioned2020-06-03T15:23:16Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-06-03T15:23:16Z
dc.date.issued2020-06
dc.identifier.citationLuo, Yi; Chen, Shifeng; Valdes, Gilmer (2020). "Machine learning for radiation outcome modeling and prediction." Medical Physics 47(5): e178-e184.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/155503
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press
dc.subject.otherstructured and unstructured datasets
dc.subject.otheraccuracy
dc.subject.otherinterpretability
dc.subject.othermachine learning
dc.subject.otherradiation outcome modeling
dc.titleMachine learning for radiation outcome modeling and prediction
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155503/1/mp13570_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155503/2/mp13570.pdf
dc.identifier.doi10.1002/mp.13570
dc.identifier.sourceMedical Physics
dc.identifier.citedreferencePearl J. Probabilistic Reasoning in Intelligent Systems. San Mateo: Morgan Kaufmann; 1988.
dc.identifier.citedreferenceChen HY, Yu S‐L, Chen C‐H, et al. A five‐gene signature and clinical outcome in non‐small‐cell lung cancer. N Engl J Med. 2007; 356: 11 – 20.
dc.identifier.citedreferenceGilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014; 370: 699 – 708.
dc.identifier.citedreferenceLionetti E, Castellaneta S, Francavilla R, et al. Introduction of gluten, HLA status, and the risk of celiac disease in children. N Engl J Med. 2014; 371: 1295 – 1303.
dc.identifier.citedreferenceSpiegelhalter DJ. Probabilistic expert systems in medicine: practical issues in handling uncertainty. Stat Sci. 1987; 2: 3 – 44.
dc.identifier.citedreferenceShortliffe EH. The adolescence of Ai in medicine: will the field come of age in the 90s. Artif Intell Med. 1993; 5: 93 – 106.
dc.identifier.citedreferenceWarner HR, Sorenson DK, Bouhaddou O. Knowledge Engineering in Health Informatics. Berlin, NY: Springer Verlag; 1997.
dc.identifier.citedreferenceBreiman L. Random forests. Mach Learn. 2001; 45: 5 – 32.
dc.identifier.citedreferenceFreund Y, Schapire RE. A decision‐theoretic generalization of on‐line learning and an application to boosting. J Comput Syst Sci. 1997; 55: 119 – 139.
dc.identifier.citedreferenceFriedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting – rejoinder. Ann Stat. 2000; 28: 400 – 407.
dc.identifier.citedreferenceCabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017; 318: 517 – 518.
dc.identifier.citedreferenceCastelvecchi D. Can we open the black box of AI? Nat News. 2016; 538: 20 – 23.
dc.identifier.citedreferenceRibeiro MT, Singh S, Guestrin C. Why should i trust you?: explaining the predictions of any classifier. In: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM: San Francisco. USA: CA; 2016.
dc.identifier.citedreferenceKim B, Shah J, Doshi‐Velez F. Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction. In: Advances in Neural Information Processing Systems 28 (Nips 2015); 2015:28.
dc.identifier.citedreferenceGrau C, Hoyer M. High‐precision Radiotherapy. Business Briefing: European Oncology Review; 2005.
dc.identifier.citedreferenceBortfeld T, Jeraj R. The physical basis and future of radiation therapy. Br J Radiol. 2011; 84: 485 – 498.
dc.identifier.citedreferenceEl Naqa I, Ruan D, Valdes G, et al. Machine learning and modeling: data, validation, communication challenges. Med Phys. 2018; 45: E834 – E840.
dc.identifier.citedreferenceLambin P, van Stiphout RGPM, Starmans MHW, et al. Predicting outcomes in radiation oncology–multifactorial decision support systems. Nat Rev Clin Oncol. 2013; 10: 27 – 40.
dc.identifier.citedreferenceGoodfellow IJ, Mirza M, Courville A, Bengio Y. Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (Nips 2014); 2014. 27.
dc.identifier.citedreferenceBlagus R, Lusa L. SMOTE for high‐dimensional class‐imbalanced data. BMC Bioinform. 2013; 14: 106.
dc.identifier.citedreferenceParker BJ, Guenter S, Bedo J. Stratification bias in low signal microarray studies. BMC Bioinform. 2007; 8: 326.
dc.identifier.citedreferenceSchiller TW, Chen Y, El Naqa I, Deasy JO. Modeling radiation‐induced lung injury risk with an ensemble of support vector machines. Neurocomputing. 2010; 73: 1861 – 1867.
dc.identifier.citedreferenceCollins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) response. Ann Intern Med. 2015; 162: 735 – 736.
dc.identifier.citedreferenceSamuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. 1959; 3: 210 – 229.
dc.identifier.citedreferenceValdes G, et al. Clinical decision support of radiotherapy treatment planning: a data‐driven machine learning strategy for patient‐specific dosimetric decision making. Radiother Oncol. 2017; 125: 392 – 397.
dc.identifier.citedreferenceShiraishi S, Moore KL. Knowledge‐based prediction of three‐dimensional dose distributions for external beam radiotherapy. Med Phys. 2016; 43: 378 – 387.
dc.identifier.citedreferenceKearney V, Haaf S, Sudhyadhom A, Valdes G, Solberg TD. unsupervised convolutional neural network‐based algorithm for deformable image registration. Phys Med Biol. 2018; 63: 185017.
dc.identifier.citedreferenceInterian Y, et al. Deep nets vs expert designed features in medical physics: an IMRT QA case study. Med Phys. 2018; 45: 2672 – 2680.
dc.identifier.citedreferenceValdes G, et al. Use of TrueBeam developer mode for imaging QA. J Appl Clin Med Phys. 2015; 16: 322 – 333.
dc.identifier.citedreferenceKearney V, et al. Correcting TG 119 confidence limits. Med Phys. 2018; 45: 1001 – 1008.
dc.identifier.citedreferenceChen T, Jabbour SK, Qin S, Haffty BG, Yue N. Objected constrained registration and manifold learning: A new patient setup approach in image guided radiation therapy of thoracic cancer. Med Phys. 2013; 40: 041710.
dc.identifier.citedreferencePeng LC, Huang P, Parekh V, et al. Application of machine learning and radiomics to distinguish true progression from treatment effect after stereotactic radiation therapy for brain metastases. Int J Radiat Oncol Biol Phys. 2018; 102: S93 – S94.
dc.identifier.citedreferenceValdes G, Solberg TD, Heskel M, Ungar L, Simone CB. Using machine learning to predict radiation pneumonitis in patients with stage I non‐small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol. 2016; 61: 6105 – 6120.
dc.identifier.citedreferenceGennatas ED, Wu A, Braunstein SE, et al. Preoperative and postoperative prediction of long‐term meningioma outcomes. PLoS ONE. 2018; 13: e0204161.
dc.identifier.citedreferenceChao HH, Valdes G, Luna JM, et al. Exploratory analysis using machine learning to predict for chest wall pain in patients with stage I non‐small‐cell lung cancer treated with stereotactic body radiation therapy. J Appl Clin Med Phys. 2018; 19: 539 – 546.
dc.identifier.citedreferenceHeld DK. Radiobiology for the radiologist, 6th ed., by Eric J. Hall and Amato J. Giaccia. Radiat Res. 2006; 166: 816 – 817.
dc.identifier.citedreferenceLyman JT. Complication probability as assessed from dose volume histograms. Radiat Res. 1985; 104: S13 – S19.
dc.identifier.citedreferenceGuyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003; 3: 1157 – 1182.
dc.identifier.citedreferenceTang J, Alelyani S, Liu H. Feature selection for classification: a review. In: Aggarwal CC (ed.) Data Classification: Algorithms and Applications. Boca Raton, FL: CRC Press; 2014: 37 – 64.
dc.identifier.citedreferenceEl Naqa I, Bradley J, Blanco AI, et al. Multivariable modeling of radiotherapy outcomes, including dose‐volume and clinical factors. Int J Radiat Oncol Biol Phys. 2006; 64: 1275 – 1286.
dc.identifier.citedreferenceDeasy JO, El Naqa I. Image‐based modeling of normal tissue complication probability for radiation therapy. Cancer Treat Res. 2008; 139: 215 – 256.
dc.identifier.citedreferenceDas SK, Zhou S, Zhang J, Yin F‐F, Dewhirst MW, Marks LB. Predicting lung radiotherapy‐induced pneumonitis using a model combining parametric Lyman probit with nonparametric decision trees. Int J Radiat Oncol Biol Phys. 2007; 68: 1212 – 1221.
dc.identifier.citedreferenceCosma G, Brown D, Archer M, Khan M, Graham Pockley A. A survey on computational intelligence approaches for predictive modeling in prostate cancer. Expert Syst Appl. 2017; 70: 1 – 19.
dc.identifier.citedreferenceDean JA, Wong KH, Welsh LC, et al. Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy. Radiother Oncol. 2016; 120: 21 – 27.
dc.identifier.citedreferenceEschrich S, Zhang H, Zhao H, et al. Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys. 2009; 75: 497 – 505.
dc.identifier.citedreferenceChen M, Jiang G‐L, Fu X‐L, et al. The impact of overall treatment time on outcomes in radiation therapy for non‐small cell lung cancer. Lung Cancer. 2000; 28: 11 – 19.
dc.identifier.citedreferenceMunley MT, Lo JY, Sibley GS, Bentel GC, Anscher MS, Marks LB. A neural network to predict symptomatic lung injury. Phys Med Biol. 1999; 44: 2241 – 2249.
dc.identifier.citedreferenceSu M, Miften M, Whiddon C, Sun X, Light K, Marks L. An artificial neural network for predicting the incidence of radiation pneumonitis. Med Phys. 2005; 32: 318 – 325.
dc.identifier.citedreferenceChen SF, Zhou S, Zhang J, Yin F‐F, Marks LB, Das SK. A neural network model to predict lung radiation‐induced pneumonitis. Med Phys. 2007; 34: 3420 – 3427.
dc.identifier.citedreferenceFriedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001; 29: 1189 – 1232.
dc.identifier.citedreferenceEl Naqa I, Bradley JD, Deasy J. Nonlinear kernel‐based approaches for predicting normal tissue toxicities. In: Seventh International Conference on Machine Learning and Applications, Proceedings; 2008: 539 – 544.
dc.identifier.citedreferenceSmith WP, Kim M, Holdsworth C, Liao J, Phillips MH. Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer. Radiat Oncol. 2016; 11: 38.
dc.identifier.citedreferenceOh JH, and El Naqa I. Bayesian network learning for detecting reliable interactions of dose‐volume related parameters in radiation pneumonitis. In: Eighth International Conference on Machine Learning and Applications, Proceedings; 2009: 484 – 488.
dc.identifier.citedreferenceLuo Y, El Naqa I, McShan DL, et al. Unraveling biophysical interactions of radiation pneumonitis in non‐small‐cell lung cancer via Bayesian network analysis. Radiother Oncol. 2017; 123: 85 – 92.
dc.identifier.citedreferenceLuo Y, et al. Development of a fully cross‐validated Bayesian network approach for local control prediction in lung cancer. IEEE Trans Radiat Plasma Med Sci. 2018; 3: 232 – 241.
dc.identifier.citedreferenceLuo Y, McShan DL, Matuszak MM, et al. A multiobjective Bayesian networks approach for joint prediction of tumor local control and radiation pneumonitis in nonsmall‐cell lung cancer (NSCLC) for response‐adapted radiotherapy. Med Phys. 2018; 45: 3980 – 3995.
dc.identifier.citedreferenceJochems A, Deist TM, van Soest J, et al. Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital – a real life proof of concept. Radiother Oncol. 2016; 121: 459 – 467.
dc.identifier.citedreferencePalma DA, Senan S, Tsujino K, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta‐analysis. Int J Radiat Oncol Biol Phys. 2013; 85: 444 – 450.
dc.identifier.citedreferenceValdes G, Chang AJ, Interian Y, et al. Salvage HDR brachytherapy: multiple hypothesis testing versus machine learning analysis. Int J Radiat Oncol Biol Phys. 2018; 101: 694 – 703.
dc.identifier.citedreferenceOspina JD, Zhu J, Chira C, et al. Random forests to predict rectal toxicity following prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2014; 89: 1024 – 1031.
dc.identifier.citedreferenceSoares I, Dias J, Rocha H, et al. Predicting xerostomia after IMRT treatments: a data mining approach. Health Technol. 2018; 8: 159 – 168.
dc.identifier.citedreferenceIshwaran H, Kogalur UB, Blackstone EH, et al. Random survival forests. Ann Appl Stat. 2008; 2: 841 – 860.
dc.identifier.citedreferenceIshwaran H, Kogalur UB. Consistency of random survival forests. Statist Prob Lett. 2010; 80: 1056 – 1064.
dc.identifier.citedreferenceJain R, Poisson LM, Gutman D, et al. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology. 2014; 272: 484 – 493.
dc.identifier.citedreferenceChollet F, Allaire JJ. Deep Learning with R. Shelter Island, NY: Manning Publications; 2018.
dc.identifier.citedreferenceWolpert DH. The lack of A priori distinctions between learning algorithms. Neural Comput. 1996; 8: 1341 – 1390.
dc.identifier.citedreferenceCaruana R, Niculescu‐Mizil A. An empirical comparison of supervised learning algorithms. In: ICML ’06 Proceedings of the 23rd international conference on Machine learning; 2006. Pittsburgh, Pennsylvania, USA: ACM New York, NY, USA
dc.identifier.citedreferenceValdes G, Luna JM, Eaton E, Simone CB, Ungar LH, Solberg TD. MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine. Sci Rep. 2016; 6: 37854.
dc.identifier.citedreferenceEl Naqa I, Li R, Murphy MJ. Machine Learning in Radiation Oncology: Theory and Applications. Switzerland: Springer; 2015.
dc.identifier.citedreferenceDeist TM, Dankers FJWM, Valdes G, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. 2018; 45: 3449 – 3459.
dc.identifier.citedreferenceYlijoki O, Porras J. Perspectives to definition of big data: a mapping study and discussion. J Innov Manag. 2016; 4: 69 – 91.
dc.identifier.citedreferenceBirkhead GS, Klompas M, Shah NR. Uses of electronic health records for public health surveillance to advance public health. Annu Rev Public Health. 2015; 36: 345 – 359.
dc.identifier.citedreferenceThompson RF, Valdes G, Fuller CD, et al. Artificial intelligence in radiation oncology: a specialty‐wide disruptive transformation? Radiother Oncol. 2018; 129: 421 – 426.
dc.identifier.citedreferenceFeng M, Valdes G, Dixit N, Solberg TD. Machine learning in radiation oncology: opportunities, requirements, and needs. Front Oncol. 2018; 8: 110.
dc.identifier.citedreferenceMorin O, Vallières M, Jochems A, et al. A deep look into the future of quantitative imaging in oncology: a statement of working principles and proposal for change. Int J Radiat Oncol Biol Phys. 2018; 102: 1074 – 1082.
dc.identifier.citedreferenceQi X, Neylon J, Santhanam A. Dosimetric predictors for quality of life after prostate stereotactic body radiation therapy via deep learning network. Int J Radiat Oncol Biol Phys. 2017; 99: S167 – S167.
dc.identifier.citedreferenceAneja S, Shaham U, Kumar RJ, et al. Deep neural network to predict local failure following stereotactic body radiation therapy: integrating imaging and clinical data to predict outcomes. Int J Radiat Oncol Biol Phys. 2017; 99: S47.
dc.identifier.citedreferenceQayyum A, Anwar SM, Awais M, Majid M. Medical image retrieval using deep convolutional neural network. Neurocomputing. 2017; 266: 8 – 20.
dc.identifier.citedreferenceLi H, Zhong H, Boimel Pj, Ben‐Josef E, Xiao Y, Fan Y. Deep convolutional neural networks for imaging based survival analysis of rectal cancer patients. Int J Radiat Oncol Biol Phys. 2017; 99: S183.
dc.identifier.citedreferenceTseng HH, Luo Y, Cui S, Chien J‐T, Ten Haken RK, El Naqa I. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med Phys. 2017; 44: 6690 – 6705.
dc.identifier.citedreferenceWu Y, Jiang M, Lei J, Xu H. Named entity recognition in chinese clinical text using deep neural network. Stud Health Technol Inform. 2015; 216: 624 – 648.
dc.identifier.citedreferenceJochems A, Deist TM, El Naqa I, et al. Developing and validating a survival prediction model for NSCLC patients through distributed learning across 3 countries. Int J Radiat Oncol Biol Phys. 2017; 99: 344 – 352.
dc.identifier.citedreferenceValdes G, Interian Y. Comment on ’deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study’. Phys Med Biol. 2018; 63: 068001.
dc.identifier.citedreferenceMitchell M. Artificial Intelligence Hits the Barrier of Meaning; 2018. Available from https://www.nytimes.com/2018/11/05/opinion/artificial-intelligence-machine-learning.html
dc.identifier.citedreferenceMeyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med. 2018; 98: 126 – 146.
dc.identifier.citedreferenceCooper GF, Aliferis CF, Ambrosino R, et al. An evaluation of machine‐learning methods for predicting pneumonia mortality. Artif Intell Med. 1997; 9: 107 – 138.
dc.identifier.citedreferenceCooper GF, Abraham V, Aliferis CF, et al. Predicting dire outcomes of patients with community acquired pneumonia. J Biomed Inform. 2005; 38: 347 – 366.
dc.identifier.citedreferenceCaruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30‐day readmission. In: The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney: Australia; 2015.
dc.identifier.citedreferenceMullainathan S, Obermeyer Z. Does machine learning automate moral hazard and error? Am Econ Rev. 2017; 107: 476 – 480.
dc.identifier.citedreferenceZech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross‐sectional study. PLoS Medicine. 2018; 15: e1002683.
dc.identifier.citedreferenceKang J, Schwartz R, Flickinger J, Beriwal S. Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective. Int J Radiat Oncol Biol Phys. 2015; 93: 1127 – 1135.
dc.identifier.citedreferenceLynch CM, van Berkel VH, Frieboes HB. Application of unsupervised analysis techniques to lung cancer patient data. PLoS ONE. 2017; 12: e0184370.
dc.identifier.citedreferenceQuinlan JR. C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann; 1993.
dc.identifier.citedreferenceBreiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Boca Raton, FL: Chapman and Hall/CRC; 1984.
dc.identifier.citedreferenceCain KP, McCarthy KD, Heilig CM, et al. An algorithm for tuberculosis screening and diagnosis in people with HIV. N Engl J Med. 2010; 362: 707 – 716.
dc.identifier.citedreferenceBerlowitz DR, Ash AS, Hickey EC, et al. Inadequate management of blood pressure in a hypertensive population. N Engl J Med. 1998; 339: 1957 – 1963.
dc.identifier.citedreferenceHaydel MJ, Preston CA, Mills TJ, Luber S, Blaudeau E, DeBlieux PMC. Indications for computed tomography in patients with minor head injury. N Engl J Med. 2000; 343: 100 – 105.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.