Show simple item record

Alternative designs and tropical tree seedling growth performance landscapes

dc.contributor.authorWorthy, Samantha J.
dc.contributor.authorLaughlin, Daniel C.
dc.contributor.authorZambrano, Jenny
dc.contributor.authorUma�a, Mar�a N.
dc.contributor.authorZhang, Caicai
dc.contributor.authorLin, Luxiang
dc.contributor.authorCao, Min
dc.contributor.authorSwenson, Nathan G.
dc.date.accessioned2020-06-03T15:23:30Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-06-03T15:23:30Z
dc.date.issued2020-06
dc.identifier.citationWorthy, Samantha J.; Laughlin, Daniel C.; Zambrano, Jenny; Uma�a, Mar�a N. ; Zhang, Caicai; Lin, Luxiang; Cao, Min; Swenson, Nathan G. (2020). "Alternative designs and tropical tree seedling growth performance landscapes." Ecology 101(6): n/a-n/a.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/155513
dc.description.abstractThe functional trait values that constitute a whole‐plant phenotype interact with the environment to determine demographic rates. Current approaches often fail to explicitly consider trait × trait and trait × environment interactions, which may lead to missed information that is valuable for understanding and predicting the drivers of demographic rates and functional diversity. Here, we consider these interactions by modeling growth performance landscapes that span multidimensional trait spaces along environmental gradients. We utilize individual‐level leaf, stem, and root trait data combined with growth data from tree seedlings along soil nutrient and light gradients in a hyper‐diverse tropical rainforest. We find that multiple trait combinations in phenotypic space (i.e., alternative designs) lead to multiple growth performance peaks that shift along light and soil axes such that no single or set of interacting traits consistently results in peak growth performance. Evidence from these growth performance peaks also generally indicates frequent independence of above‐ and belowground resource acquisition strategies. These results help explain how functional diversity is maintained in ecological communities and question the practice of utilizing a single trait or environmental variable, in isolation, to predict the growth performance of individual trees.
dc.publisherYunnan Science and Technology Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othertropical forest
dc.subject.otherfunctional traits
dc.subject.othergrowth
dc.subject.otherforest ecology
dc.subject.otherdemographic rate
dc.subject.otherseedlings
dc.titleAlternative designs and tropical tree seedling growth performance landscapes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155513/1/ecy3007.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155513/2/ecy3007-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155513/3/ecy3007_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155513/4/ecy3007-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155513/5/ecy3007-sup-0004-DataS1.pdf
dc.identifier.doi10.1002/ecy.3007
dc.identifier.sourceEcology
dc.identifier.citedreferencePoorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot, and L. Mommer. 2012. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytologist 193: 30 – 50.
dc.identifier.citedreferenceOhlemüller, R., S. Walker, and J. B. Wilson. 2006. Local vs regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species. Oikos 112: 493 – 501.
dc.identifier.citedreferenceOnoda, Y., et al. 2011. Global patterns of leaf mechanical properties. Ecology Letters 14: 301 – 312.
dc.identifier.citedreferencePaine, C. E. T., et al. 2015. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology 103: 978 – 989.
dc.identifier.citedreferencePaine, C. E. T., M. Stenflo, C. D. Philipson, P. Saner, R. Bagchi, R. C. Ong, and A. Hector. 2012. Differential growth responses in seedlings of ten species of Dipterocarpaceae to experimental shading and defoliation. Journal of Tropical Ecology 28: 377 – 384.
dc.identifier.citedreferencePalmiotto, P. A., S. J. Davies, K. A. Vogt, M. S. Ashton, D. J. Vogt, and P. S. Ashton. 2004. Soil‐related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology 92: 609 – 623.
dc.identifier.citedreferencePlummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Pages 1 – 10 in K. Hornik, F. Leisch, and A. Zeileis, editors. Proceedings of the 3rd International workshop on distributed statistical computing (DSC 2003). Austrian Association for Statistical Computing (AASC) and the R Foundation for Statistical Computing, Vienna, Austria.
dc.identifier.citedreferencePoorter, L., et al. 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89: 1908 – 1920.
dc.identifier.citedreferenceHair, J. F., W. C. Black, B. J. Babin, and R. E. Anderson. 2014. Multivariate data analysis. Seventh edition. Pearson Education Limited, Harlow, UK.
dc.identifier.citedreferenceR Development Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
dc.identifier.citedreferenceReich, P. B. 2014. The world‐wide ‘fast‐slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102: 275 – 031.
dc.identifier.citedreferenceReich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences USA 94: 13730 – 13734.
dc.identifier.citedreferenceRusso, S. E., S. J. Davies, D. A. King, and S. Tan. 2005. Soil‐related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology 93: 879 – 889.
dc.identifier.citedreferenceRusso, S. E., P. Brown, S. Tan, and S. J. Davies. 2008. Interspecific demographic trade‐offs and soil‐related habitat associations of tree species along resource gradients. Journal of Ecology 96: 192 – 203.
dc.identifier.citedreferenceSimpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York, New York, USA.
dc.identifier.citedreferenceSpiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B: Statistical Methodology. 64: 583 – 616.
dc.identifier.citedreferenceSwenson, N. G., et al. 2012. The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography 21: 798 – 808.
dc.identifier.citedreferenceSwenson, N. G., S. J. Worthy, D. Eubanks, Y. Iida, L. Monks, K. Petprakob, V. E. Rubio, K. Staiger, and J. Zambrano. 2020. A reframing of trait‐demographic rate analyses for ecology and evolutionary biology. International Journal of Plant Sciences 181: 33 – 43.
dc.identifier.citedreferenceTerry, N., and A. Ulrich. 1974. Effects of magnesium deficiency on the photosynthesis and respiration of leaves of sugar beet. Plant Physiology 54: 379 – 381.
dc.identifier.citedreferenceUmaña, M. N., C. Zhang, M. Cao, L. Lin, and N. G. Swenson. 2015. Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters 18: 1329 – 1337.
dc.identifier.citedreferenceUmaña, M. N., J. Forero‐Montaña, R. Muscarella, C. J. Nytch, J. Thompson, M. Uriarte, J. Zimmerman, and N. G. Swenson. 2016. Interspecific functional convergence and divergence and intraspecific negative density dependence underlie the seed‐seedling transition in tropical trees. American Naturalist 187: 99 – 109.
dc.identifier.citedreferenceUmaña, M. N., E. F. Zipkin, C. Zhang, M. Cao, L. Lin, and N. G. Swenson. 2018. Individual‐level trait variation and negative density dependence affect growth in tropical tree seedlings. Journal of Ecology 106: 2446 – 2455.
dc.identifier.citedreferenceWesterband, A. C., and C. C. Horvitz. 2017. Early life conditions and precipitation influence the performance of widespread understorey herbs in variable light environments. Journal of Ecology 105: 1298 – 1308.
dc.identifier.citedreferenceWissuwa, M. 2003. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiology 133: 1947 – 1958.
dc.identifier.citedreferenceWright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97 – 159.
dc.identifier.citedreferenceWright, S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the Sixth International Congress of Genetics 1: 356 – 366.
dc.identifier.citedreferenceWright, S. 1945. Tempo and mode in evolution: a critical review. Ecology 26: 415 – 419.
dc.identifier.citedreferenceWright, I. J., et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821 – 827.
dc.identifier.citedreferenceWright, I. J., and M. Westoby. 1999. Differences in seedling growth behavior among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology 87: 85 – 97.
dc.identifier.citedreferenceYang, J., M. Cao, and N. G. Swenson. 2018. Why functional traits do not predict trait demographic rates. Trends in Ecology and Evolution 33: 326 – 336.
dc.identifier.citedreferenceAckerly, D. D., et al. 2000. The evolution of plant ecophysiological traits: Recent advances and future directions. BioScience 50: 979 – 995.
dc.identifier.citedreferenceAckerly, D. D. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences 164: S165 – S184.
dc.identifier.citedreferenceAdler, P. B., A. Fajardo, A. R. Kleinhesselink, and N. J. B. Kraft. 2013. Trait‐based tests of coexistence mechanism. Ecology Letters 16: 1294 – 1306.
dc.identifier.citedreferencePlummer, M. 2016. rjags: Bayesian graphical models using MCMC. R package version 4‐6. https://CRAN.R-project.org/package=rjags
dc.identifier.citedreferenceAdler, P. B., R. Salguero‐Gómez, A. Compagnoni, J. S. Hsu, J. Ray‐Mukherjee, C. Mbeau‐Ache, and M. Franco. 2014. Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences USA 111: 740 – 745.
dc.identifier.citedreferenceAnderson, J. T. 2016. Plant fitness in a rapidly changing world. New Phytologist 210: 81 – 87.
dc.identifier.citedreferenceArnold, S. J., M. E. Pfrender, and A. G. Jones. 2001. The adaptive landscape as a conceptual bridge between micro‐ and macroevolution. Genetica 112–113: 9 – 32.
dc.identifier.citedreferenceBaldeck, C. A., et al. 2013. Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society B 280: 20122532.
dc.identifier.citedreferenceBaraloto, C., C. E. T. Paine, L. Poorter, J. Beauchene, D. Bonal, A. Domenach, B. Hérault, S. Patiño, J.‐C. Roggy, and J. Chave. 2010. Decoupled leaf and stem economics in rain forest trees. Ecology Letters 13: 1338 – 1347.
dc.identifier.citedreferenceBlonder, B., R. E. Kapas, R. M. Dalton, B. J. Graae, J. M. Heiling, and Ø. H. Opedal. 2018. Microenvironment and functional‐trait context dependence predict alpine plant community dynamics. Journal of Ecology 106: 1323 – 1337.
dc.identifier.citedreferenceBroadley, M. R., P. J. White, J. P. Hammond, I. Zelko, and A. Lux. 2007. Zinc in plant. New Phytologist 173: 677 – 702.
dc.identifier.citedreferenceCao, M., H. Zhu, H. Wang, G. Lan, Y. Hu, S. Zhou, X. Deng, and J. Cui. 2008. Xishuangbanna tropical seasonal rainforest dynamics plot: Tree distribution maps, diameter tables and species documentation. Yunnan Science and Technology Press, Kunming, China.
dc.identifier.citedreferenceCavender‐Bares, J., D. D. Ackerly, D. A. Baum, and F. A. Bazzaz. 2004. Phylogenetic overdispersion in Floridian oak communities. American Naturalist 163: 823 – 843.
dc.identifier.citedreferenceChave, J., D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson, and A. E. Zanne. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351 – 366.
dc.identifier.citedreferenceCosta, D. S., F. Gerschlauer, H. Pabst, A. Kühnel, B. Huwe, R. Kiese, Y. Kuzyakov, and M. Kleyer. 2017. Community‐weighted means and functional dispersion of plant functional traits along environmental gradients on Mount Kilimanjaro. Journal of Vegetation Science 28: 684 – 695.
dc.identifier.citedreferenceD’Andrea, R., A. Ostling, and J. P. O’Dwyer. 2018. Translucent windows: how uncertainty in competitive interactions impacts detection of community pattern. Ecology Letters 21: 826 – 835.
dc.identifier.citedreferenceDenwood, M. J. 2016. runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of Statistical Software 71: 1 – 25.
dc.identifier.citedreferenceDwyer, J. M., and D. C. Laughlin. 2017a. Selection on trait combinations along environmental gradients. Journal of Vegetation Science 28: 672 – 673.
dc.identifier.citedreferenceDwyer, J. M., and D. C. Laughlin. 2017b. Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly. Ecology Letters 20: 872 – 882.
dc.identifier.citedreferenceEnquist, B. J., A. J. Kerkhoff, S. C. Stark, N. G. Swenson, M. C. McCarthy, and C. A. Price. 2007. A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature 449: 218 – 222.
dc.identifier.citedreferenceEnquist, B. J., J. Norberg, S. P. Bonser, C. Violle, C. T. Webb, A. Henderson, L. L. Sloat, and V. M. Savage. 2015. Scaling from traits to ecosystems: Developing a general trait driver theory via integrating trait‐based and metabolic scaling theories. Advances in Ecological Research 52: 249 – 318.
dc.identifier.citedreferenceEvans, J. R., and V. C. Clarke. 2019. The nitrogen cost of photosynthesis. Journal of Experimental Botany 70: 7 – 15.
dc.identifier.citedreferenceFonseca, C. R., J. M. C. Overton, B. Collins, and M. Westoby. 2000. Shifts in trait‐combinations along rainfall and phosphorus gradients. Journal of Ecology 88: 964 – 977.
dc.identifier.citedreferenceFortunel, C., P. V. A. Fine, and C. Baraloto. 2012. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional Ecology 26: 1153 – 1161.
dc.identifier.citedreferenceFreschet, G. T., E. M. Swart, and J. H. C. Cornelissen. 2015. Integrated plant phenotypic responses to contrasting above‐ and below‐ground resources: key roles of specific leaf area and root mass fraction. New Phytologist 206: 1247 – 1260.
dc.identifier.citedreferenceGarnier, E. 1991. Resource capture, biomass allocation and growth in herbaceous plants. Trends in Ecology and Evolution 6: 126 – 131.
dc.identifier.citedreferenceGelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science. 7: 457 – 511.
dc.identifier.citedreferenceGelman, A., X.‐L. Meng, and H. Stern. 1996. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 6: 733 – 807.
dc.identifier.citedreferenceGelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2013. Bayesian data analysis, Third edition. Chapman and Hall/CRC, New York, New York, USA.
dc.identifier.citedreferenceGreen, P. T., K. E. Harms, and J. H. Connell. 2014. Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proceedings of the National Academy of Sciences USA 111: 18649 – 18654.
dc.identifier.citedreferenceHilleRisLambers, J., P. B. Adler, W. S. Harpole, J. M. Levine, and M. M. Mayfield. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43: 227 – 248.
dc.identifier.citedreferenceHoffmann, W. A., and H. Poorter. 2002. Avoiding bias in calculations of relative growth rate. Annals of Botany 80: 37 – 42.
dc.identifier.citedreferenceHolste, E. K., R. K. Kobe, and C. F. Vriesendorp. 2011. Seedling growth responses to soil resources in the understory of a wet tropical forest. Ecology 92: 1828 – 1838.
dc.identifier.citedreferenceHubbell, S. P., R. B. Foster, S. T. O’Brien, K. E. Harms, R. Condit, B. Wechsler, S. J. Wright, and S. Loo‐de‐Lao. 1999. Light‐gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283: 554 – 557.
dc.identifier.citedreferenceItoh, A., T. Yamakura, T. Ohkubo, M. Kanzaki, P. A. Palmiotto, J. V. LaFrankie, P. S. Ashton, and H. S. Lee. 2003. Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecological Research 18: 307 – 320.
dc.identifier.citedreferenceJager, M. M., S. J. Richardson, P. J. Bellingham, M. J. Clearwater, and D. C. Laughlin. 2015. Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology 103: 374 – 385.
dc.identifier.citedreferenceJohn, R., et al. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences USA 104: 864 – 869.
dc.identifier.citedreferenceKeddy, P. A. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157 – 164.
dc.identifier.citedreferenceKéry, M. 2010. Introduction to WinBUGS for ecologists. Academic Press, Burlington, Vermont, USA.
dc.identifier.citedreferenceKraft, N. J. B., M. R. Metz, R. S. Condit, and J. Chave. 2010. The relationship between wood density and mortality in a global tropical forest data set. New Phytologist 188: 1124 – 1136.
dc.identifier.citedreferenceKraft, N. J. B., O. Godoy, and J. M. Levine. 2015. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences USA 112: 797 – 802.
dc.identifier.citedreferenceLaughlin, D. C. 2018. Rugged fitness landscapes and Darwinian demons in trait‐based ecology. New Phytologist 217: 501 – 503.
dc.identifier.citedreferenceLaughlin, D. C., and J. Messier. 2015. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology and Evolution 30: 487 – 496.
dc.identifier.citedreferenceLaughlin, D. C., R. T. Strahan, P. B. Adler, and M. M. Moore. 2018. Survival rates indicate that correlations between community‐weighted mean traits and environments can be unreliable estimates of the adaptive value of traits. Ecology Letters 21: 411 – 421.
dc.identifier.citedreferenceLesaffre, E., and A. B. Lawson. 2012. Bayesian biostatistics. John Wiley & Sons, West Sussex, UK.
dc.identifier.citedreferenceLiu, X., N. G. Swenson, D. Lin, X. Mi, M. N. Umaña, B. Schmid, and K. Ma. 2016. Linking individual‐level functional traits to tree growth in a subtropical forest. Ecology 97: 2396 – 2405.
dc.identifier.citedreferenceLusk, C. H., P. B. Reich, R. A. Montgomery, D. D. Ackerly, and J. Cavender‐Bares. 2008. Why are evergreen leaves so contrary about shade? Trends in Ecology and Evolution 23: 299 – 303.
dc.identifier.citedreferenceMarks, C. O., and M. J. Lechowicz. 2006. Alternative designs and the evolution of functional diversity. American Naturalist 167: 55 – 66.
dc.identifier.citedreferenceMcGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178 – 185.
dc.identifier.citedreferenceMetz, M. R., W. P. Sousa, and R. Valencia. 2010. Widespread density‐dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology 91: 3675 – 3685.
dc.identifier.citedreferenceMuscarella, R., and M. Uriarte. 2016. Do community‐weighted mean functional traits reflect optimal strategies? Proceedings of the Royal Society B 283: 20152434.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.