Show simple item record

Genetic and epigenetic regulation of abdominal aortic aneurysms

dc.contributor.authorMangum, Kevin D.
dc.contributor.authorFarber, Mark A.
dc.date.accessioned2020-06-03T15:23:50Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-06-03T15:23:50Z
dc.date.issued2020-06
dc.identifier.citationMangum, Kevin D.; Farber, Mark A. (2020). "Genetic and epigenetic regulation of abdominal aortic aneurysms." Clinical Genetics 97(6): 815-826.
dc.identifier.issn0009-9163
dc.identifier.issn1399-0004
dc.identifier.urihttps://hdl.handle.net/2027.42/155527
dc.description.abstractAbdominal aortic aneurysms (AAAs) are focal dilations of the aorta that develop from degenerative changes in the media and adventitia of the vessel. Ruptured AAAs have a mortality of up to 85%, thus it is important to identify patients with AAA at increased risk for rupture who would benefit from increased surveillance and/or surgical repair. Although the exact genetic and epigenetic mechanisms regulating AAA formation are not completely understood, Mendelian cases of AAA, which result from pathologic variants in a single gene, have helped provide a basic understanding of AAA pathophysiology. More recently, genome wide associated studies (GWAS) have identified additional variants, termed single nucleotide polymorphisms, in humans that may be associated with AAAs. While some variants may be associated with AAAs and play causal roles in aneurysm pathogenesis, it should be emphasized that the majority of SNPs do not actually cause disease. In addition to GWAS, other studies have uncovered epigenetic causes of disease that regulate expression of genes known to be important in AAA pathogenesis. This review describes many of these genetic and epigenetic contributors of AAAs, which altogether provide a deeper insight into AAA pathogenesis.
dc.publisherWiley Periodicals, Inc.
dc.publisherBlackwell Publishing Ltd
dc.subject.otherlong non‐coding RNA
dc.subject.othermicroRNA
dc.subject.othersingle nucleotide polymorphism
dc.subject.otherabdominal aortic aneurysm
dc.subject.otherchromatin
dc.subject.otherDNA methylation
dc.subject.otherepigenetic
dc.subject.othergenetic
dc.subject.otherhistone modification
dc.titleGenetic and epigenetic regulation of abdominal aortic aneurysms
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155527/1/cge13705.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155527/2/cge13705_am.pdf
dc.identifier.doi10.1111/cge.13705
dc.identifier.sourceClinical Genetics
dc.identifier.citedreferenceChen KC, Wang YS, Hu CY et al. OxLDL up‐regulates microRNA‐29b, leading to epigenetic modifications of MMP‐2/MMP‐9 genes: a novel mechanism for cardiovascular diseases. Faseb J. 2011; 25 ( 5 ): 1718 ‐ 1728.
dc.identifier.citedreferenceYu B, Liu L, Sun H, Chen Y. Long noncoding RNA AK056155 involved in the development of Loeys‐Dietz syndrome through AKT/PI3K signaling pathway. Int J Clin Exp Pathol. 2015; 8 ( 9 ): 10768 ‐ 10775.
dc.identifier.citedreferenceLi Y, Maegdefessel L. Non‐coding RNA contribution to thoracic and abdominal aortic aneurysm disease development and progression. Front Physiol. 2017; 8: 429.
dc.identifier.citedreferenceLeung A, Stapleton K, Natarajan R. Functional long non‐coding RNAs in vascular smooth muscle cells. Curr Top Microbiol Immunol. 2016; 394: 127 ‐ 141.
dc.identifier.citedreferenceLeung A, Trac C, Jin W et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013; 113 ( 3 ): 266 ‐ 278.
dc.identifier.citedreferenceLiu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR‐221 and miR‐222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009; 104 ( 4 ): 476 ‐ 487.
dc.identifier.citedreferenceJeong G, Kwon DH, Shin S et al. Long noncoding RNAs in vascular smooth muscle cells regulate vascular calcification. Sci Rep. 2019; 9 ( 1 ): 5848.
dc.identifier.citedreferenceBallantyne MD, Pinel K, Dakin R et al. Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation. 2016; 133 ( 21 ): 2050 ‐ 2065.
dc.identifier.citedreferenceBell RD, Long X, Lin M et al. Identification and initial functional characterization of a human vascular cell‐enriched long noncoding RNA. Arterioscler Thromb Vasc Biol. 2014; 34 ( 6 ): 1249 ‐ 1259.
dc.identifier.citedreferenceTang R, Zhang G, Wang YC, Mei X, Chen SY. The long non‐coding RNA GAS5 regulates transforming growth factor β (TGF‐β)‐induced smooth muscle cell differentiation via RNA Smad‐binding elements. J Biol Chem. 2017; 292 ( 34 ): 14270 ‐ 14278.
dc.identifier.citedreferenceZhao J, Zhang W, Lin M et al. MYOSLID is a novel serum response factor‐dependent long noncoding RNA that amplifies the vascular smooth muscle differentiation program. Arterioscler Thromb Vasc Biol. 2016; 36 ( 10 ): 2088 ‐ 2099.
dc.identifier.citedreferenceAhmed ASI, Dong K, Liu J et al. Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci U S A. 2018; 115 ( 37 ): E8660 ‐ E8667.
dc.identifier.citedreferenceHinterseher I, Tromp G, Kuivaniemi H. Genes and abdominal aortic aneurysm. Ann Vasc Surg. 2011; 25 ( 3 ): 388 ‐ 412.
dc.identifier.citedreferenceStratton MS, Farina FM, Elia L. Epigenetics and vascular diseases. J Mol Cell Cardiol. 2019; 133: 148 ‐ 163.
dc.identifier.citedreferenceWhayne TF. Epigenetics in the development, modification, and prevention of cardiovascular disease. Mol Biol Rep. 2015; 42 ( 4 ): 765 ‐ 776.
dc.identifier.citedreferenceHan Y, Tanios F, Reeps C et al. Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm. Clin Epigenetics. 2016; 8: 3.
dc.identifier.citedreferenceGalán M, Varona S, Orriols M et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech. 2016; 9 ( 5 ): 541 ‐ 552.
dc.identifier.citedreferenceVinh A, Gaspari TA, Liu HB, Dousha LF, Widdop RE, Dear AE. A novel histone deacetylase inhibitor reduces abdominal aortic aneurysm formation in angiotensin II‐infused apolipoprotein E‐deficient mice. J Vasc Res. 2008; 45 ( 2 ): 143 ‐ 152.
dc.identifier.citedreferenceJiang H, Xia Q, Xin S et al. Abnormal epigenetic modifications in peripheral T cells from patients with abdominal aortic aneurysm are correlated with disease development. J Vasc Res. 2015; 52 ( 6 ): 404 ‐ 413.
dc.identifier.citedreferenceXia Q, Zhang J, Han Y et al. Epigenetic regulation of regulatory T cells in patients with abdominal aortic aneurysm. FEBS Open Bio. 2019; 9 ( 6 ): 1137 ‐ 1143.
dc.identifier.citedreferenceToghill BJ, Saratzis A, Harrison SC, Verissimo AR, Mallon EB, Bown MJ. The potential role of DNA methylation in the pathogenesis of abdominal aortic aneurysm. Atherosclerosis. 2015; 241 ( 1 ): 121 ‐ 129.
dc.identifier.citedreferenceYin M, Zhang J, Wang Y et al. Deficient CD4+CD25+ T regulatory cell function in patients with abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2010; 30 ( 9 ): 1825 ‐ 1831.
dc.identifier.citedreferenceHalazun KJ, Bofkin KA, Asthana S, Evans C, Henderson M, Spark JI. Hyperhomocysteinaemia is associated with the rate of abdominal aortic aneurysm expansion. Eur J Vasc Endovasc Surg. 2007; 33 ( 4 ): 391 ‐ 394. discussion 395–6.
dc.identifier.citedreferenceLiu Z, Luo H, Zhang L et al. Hyperhomocysteinemia exaggerates adventitial inflammation and angiotensin II‐induced abdominal aortic aneurysm in mice. Circ Res. 2012; 111 ( 10 ): 1261 ‐ 1273.
dc.identifier.citedreferenceGiusti B, Saracini C, Bolli P et al. Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm. J Med Genet. 2008; 45 ( 11 ): 721 ‐ 730.
dc.identifier.citedreferenceStrauss E, Waliszewski K, Gabriel M, Zapalski S, Pawlak AL. Increased risk of the abdominal aortic aneurysm in carriers of the MTHFR 677T allele. J Appl Genet. 2003; 44 ( 1 ): 85 ‐ 93.
dc.identifier.citedreferenceKrishna SM, Dear A, Craig JM, Norman PE, Golledge J. The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atherosclerosis. 2013; 228 ( 2 ): 295 ‐ 305.
dc.identifier.citedreferenceNordon IM, Hinchliffe RJ, Loftus IM, Thompson MM. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol. 2011; 8 ( 2 ): 92 ‐ 102.
dc.identifier.citedreferenceKarthikesalingam A, Vidal‐Diez A, Holt PJ et al. Thresholds for abdominal aortic aneurysm repair in England and the United States. N Engl J Med. 2016; 375 ( 21 ): 2051 ‐ 2059.
dc.identifier.citedreferenceAltobelli E, Rapacchietta L, Profeta VF, Fagnano R. Risk factors for abdominal aortic aneurysm in population‐based studies: a systematic review and meta‐analysis. Int J Environ Res Public Health. 2018; 15 ( 12 ):1‐19.
dc.identifier.citedreferenceAune D, Schlesinger S, Norat T, Riboli E. Tobacco smoking and the risk of abdominal aortic aneurysm: a systematic review and meta‐analysis of prospective studies. Sci Rep. 2018; 8 ( 1 ): 14786.
dc.identifier.citedreferenceSakalihasan N, Michel JB, Katsargyris A et al. Abdominal aortic aneurysms. Nat Rev Dis Primers. 2018; 4 ( 1 ): 34.
dc.identifier.citedreferenceJoergensen TM, Christensen K, Lindholt JS, Larsen LA, Green A, Houlind K. Editor’s choice—high heritability of liability to abdominal aortic aneurysms: a population based twin study. Eur J Vasc Endovasc Surg. 2016; 52 ( 1 ): 41 ‐ 46.
dc.identifier.citedreferenceBoese AC, Chang L, Yin KJ, Chen YE, Lee JP, Hamblin MH. Sex differences in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol. 2018; 314 ( 6 ): H1137 ‐ H1152.
dc.identifier.citedreferenceLo RC, Bensley RP, Hamdan AD et al. Gender differences in abdominal aortic aneurysm presentation, repair, and mortality in the vascular study Group of new England. J Vasc Surg. 2013; 57 ( 5 ): 1261 ‐ 1268.
dc.identifier.citedreferenceDeery SE, Schermerhorn ML. Should abdominal aortic aneurysms in women be repaired at a lower diameter threshold? Vasc Endovascular Surg. 2018; 52 ( 7 ): 543 ‐ 547.
dc.identifier.citedreferencevan de Luijtgaarden KM, Rouwet EV, Hoeks SE, Stolker RJ, Verhagen HJ, Majoor‐Krakauer D. Risk of abdominal aortic aneurysm (AAA) among male and female relatives of AAA patients. Vasc Med. 2017; 22 ( 2 ): 112 ‐ 118.
dc.identifier.citedreferenceLo RC, Lu B, Fokkema MT et al. Relative importance of aneurysm diameter and body size for predicting abdominal aortic aneurysm rupture in men and women. J Vasc Surg. 2014; 59 ( 5 ): 1209 ‐ 1216.
dc.identifier.citedreferenceKumar Y, Hooda K, Li S, Goyal P, Gupta N, Adeb M. Abdominal aortic aneurysm: pictorial review of common appearances and complications. Ann Transl Med. 2017; 5 ( 12 ): 256.
dc.identifier.citedreferenceBarrett HE, Cunnane EM, Hidayat H et al. On the influence of wall calcification and intraluminal thrombus on prediction of abdominal aortic aneurysm rupture. J Vasc Surg. 2018; 67 ( 4 ): 1234 ‐ 1246.e2.
dc.identifier.citedreferenceHaller SJ, Crawford JD, Courchaine KM et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J Vasc Surg. 2018; 67 ( 4 ): 1051 ‐ 1058.e1.
dc.identifier.citedreferenceFillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg. 2002; 36 ( 3 ): 589 ‐ 597.
dc.identifier.citedreferenceAoki C, Fukuda W, Kondo N et al. Surgical management of mycotic aortic aneurysms. Ann Vasc Dis. 2017; 10 ( 1 ): 29 ‐ 35.
dc.identifier.citedreferenceBednarkiewicz M, Pretre R, Kalangos A, Khatchatourian G, Bruschweiler I, Faidutti B. Aortocaval fistula associated with abdominal aortic aneurysm: a diagnostic challenge. Ann Vasc Surg. 1997; 11 ( 5 ): 464 ‐ 466.
dc.identifier.citedreferenceDerubertis BG, Trocciola SM, Ryer EJ et al. Abdominal aortic aneurysm in women: prevalence, risk factors, and implications for screening. J Vasc Surg. 2007; 46 ( 4 ): 630 ‐ 635.
dc.identifier.citedreferenceAntoniou GA, Georgiadis GS, Antoniou SA, Kuhan G, Murray D. A meta‐analysis of outcomes of endovascular abdominal aortic aneurysm repair in patients with hostile and friendly neck anatomy. J Vasc Surg. 2013; 57 ( 2 ): 527 ‐ 538.
dc.identifier.citedreferenceBischoff MS, Peters AS, Meisenbacher K, Böckler D. Challenging access in endovascular repair of infrarenal aortic aneurysms. J Cardiovasc Surg (Torino). 2014; 55 ( 2 Suppl 1 ): 75 ‐ 83.
dc.identifier.citedreferenceEtkin Y, Baig A, Foley PJ et al. Management of difficult access during endovascular aneurysm repair. Ann Vasc Surg. 2017; 44: 77 ‐ 82.
dc.identifier.citedreferenceCaglayan AO, Dundar M. Inherited diseases and syndromes leading to aortic aneurysms and dissections. Eur J Cardiothorac Surg. 2009; 35 ( 6 ): 931 ‐ 940.
dc.identifier.citedreferenceFranken R, Radonic T, den Hartog AW et al. The revised role of TGF‐β in aortic aneurysms in Marfan syndrome. Neth Heart J. 2015; 23 ( 2 ): 116 ‐ 121.
dc.identifier.citedreferenceBenke K, Ágg B, Szilveszter B et al. The role of transforming growth factor‐beta in Marfan syndrome. Cardiol J. 2013; 20 ( 3 ): 227 ‐ 234.
dc.identifier.citedreferenceRomaniello F, Mazzaglia D, Pellegrino A et al. Aortopathy in Marfan syndrome: an update. Cardiovasc Pathol. 2014; 23 ( 5 ): 261 ‐ 266.
dc.identifier.citedreferenceVerstraeten A, Alaerts M, Van Laer L, Loeys B. Marfan syndrome and related disorders: 25 years of gene discovery. Hum Mutat. 2016; 37 ( 6 ): 524 ‐ 531.
dc.identifier.citedreferenceVan Laer L, Dietz H, Loeys B. Loeys‐Dietz syndrome. Adv Exp Med Biol. 2014; 802: 95 ‐ 105.
dc.identifier.citedreferenceSchepers D, Tortora G, Morisaki H et al. A mutation update on the LDS‐associated genes TGFB2/3 and SMAD2/3. Hum Mutat. 2018; 39 ( 5 ): p621 ‐ p634.
dc.identifier.citedreferenceBrooke BS, Karnik SK, Li DY. Extracellular matrix in vascular morphogenesis and disease: structure versus signal. Trends Cell Biol. 2003; 13 ( 1 ): 51 ‐ 56.
dc.identifier.citedreferenceRaffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008; 75 ( 2 ): 346 ‐ 359.
dc.identifier.citedreferenceSaracini C, Bolli P, Sticchi E et al. Polymorphisms of genes involved in extracellular matrix remodeling and abdominal aortic aneurysm. J Vasc Surg. 2012; 55 ( 1 ): 171 ‐ 179.e2.
dc.identifier.citedreferenceJones GT, Tromp G, Kuivaniemi H et al. Meta‐analysis of genome‐wide association studies for abdominal aortic aneurysm identifies four new disease‐specific risk loci. Circ Res. 2017; 120 ( 2 ): 341 ‐ 353.
dc.identifier.citedreferenceLi T, Lv Z, Jing JJ, Yang J, Yuan Y. Matrix metalloproteinase family polymorphisms and the risk of aortic aneurysmal diseases: a systematic review and meta‐analysis. Clin Genet. 2018; 93 ( 1 ): 15 ‐ 32.
dc.identifier.citedreferenceFreestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell JT. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1995; 15 ( 8 ): 1145 ‐ 1151.
dc.identifier.citedreferenceDavis V, Persidskaia R, Baca‐Regen L et al. Matrix metalloproteinase‐2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 1998; 18 ( 10 ): 1625 ‐ 1633.
dc.identifier.citedreferencePyo R, Lee JK, Shipley JM et al. Targeted gene disruption of matrix metalloproteinase‐9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. 2000; 105 ( 11 ): 1641 ‐ 1649.
dc.identifier.citedreferenceLongo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest. 2002; 110 ( 5 ): 625 ‐ 632.
dc.identifier.citedreferencePrice SJ, Greaves DR, Watkins H. Identification of novel, functional genetic variants in the human matrix metalloproteinase‐2 gene: role of Sp1 in allele‐specific transcriptional regulation. J Biol Chem. 2001; 276 ( 10 ): 7549 ‐ 7558.
dc.identifier.citedreferenceHadi T, Boytard L, Silvestro M et al. Macrophage‐derived netrin‐1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat Commun. 2018; 9 ( 1 ): 5022.
dc.identifier.citedreferenceDeguara J, Burnand KG, Berg J et al. An increased frequency of the 5A allele in the promoter region of the MMP3 gene is associated with abdominal aortic aneurysms. Hum Mol Genet. 2007; 16 ( 24 ): 3002 ‐ 3007.
dc.identifier.citedreferenceZhu C, Odeberg J, Hamsten A, Eriksson P. Allele‐specific MMP‐3 transcription under in vivo conditions. Biochem Biophys Res Commun. 2006; 348 ( 3 ): 1150 ‐ 1156.
dc.identifier.citedreferenceSouslova V, Townsend PA, Mann J et al. Allele‐specific regulation of matrix metalloproteinase‐3 gene by transcription factor NFkappaB. PLoS One. 2010; 5 ( 3 ): e9902.
dc.identifier.citedreferenceShi M, Xia J, Xing H et al. The Sp1‐mediaded allelic regulation of MMP13 expression by an ESCC susceptibility SNP rs2252070. Sci Rep. 2016; 6: 27013.
dc.identifier.citedreferenceGalle C, Schandené L, Stordeur P et al. Predominance of type 1 CD4+ T cells in human abdominal aortic aneurysm. Clin Exp Immunol. 2005; 142 ( 3 ): 519 ‐ 527.
dc.identifier.citedreferenceBown MJ, Horsburgh T, Nicholson ML, Bell PR, Sayers RD. Cytokine gene polymorphisms and the inflammatory response to abdominal aortic aneurysm repair. Br J Surg. 2003; 90 ( 9 ): 1085 ‐ 1092.
dc.identifier.citedreferenceBown MJ, Lloyd GM, Sandford RM et al. The interleukin‐10‐1082 ’A’ allele and abdominal aortic aneurysms. J Vasc Surg. 2007; 46 ( 4 ): 687 ‐ 693.
dc.identifier.citedreferenceWang F, Quan QQ, Zhang CL, Li YB, Jiang TB. Association between polymorphisms in the interleukin‐10 gene and risk of abdominal aortic aneurysm. Genet Mol Res. 2015; 14 ( 4 ): 17599 ‐ 17604.
dc.identifier.citedreferenceEskdale J, Gallagher G, Verweij CL, Keijsers V, Westendorp RG, Huizinga TW. Interleukin 10 secretion in relation to human IL‐10 locus haplotypes. Proc Natl Acad Sci U S A. 1998; 95 ( 16 ): 9465 ‐ 9470.
dc.identifier.citedreferenceHarrison SC, Smith AJ, Jones GT et al. Interleukin‐6 receptor pathways in abdominal aortic aneurysm. Eur Heart J. 2013; 34 ( 48 ): 3707 ‐ 3716.
dc.identifier.citedreferenceDawson J, Cockerill GW, Choke E, Belli AM, Loftus I, Thompson MM. Aortic aneurysms secrete interleukin‐6 into the circulation. J Vasc Surg. 2007; 45 ( 2 ): 350 ‐ 356.
dc.identifier.citedreferenceYoshimura K, Aoki H, Ikeda Y et al. Regression of abdominal aortic aneurysm by inhibition of c‐Jun N‐terminal kinase. Nat Med. 2005; 11 ( 12 ): 1330 ‐ 1338.
dc.identifier.citedreferenceNishihara M, Aoki H, Ohno S et al. The role of IL‐6 in pathogenesis of abdominal aortic aneurysm in mice. PLoS One. 2017; 12 ( 10 ): e0185923.
dc.identifier.citedreferenceYoshimura K, Aoki H, Ikeda Y, Furutani A, Hamano K, Matsuzaki M. Identification of c‐Jun N‐terminal kinase as a therapeutic target for abdominal aortic aneurysm. Ann N Y Acad Sci. 2006; 1085: 403 ‐ 406.
dc.identifier.citedreferenceYoshimura K, Aoki H, Ikeda Y, Furutani A, Hamano K, Matsuzaki M. Regression of abdominal aortic aneurysm by inhibition of c‐Jun N‐terminal kinase in mice. Ann N Y Acad Sci. 2006; 1085: 74 ‐ 81.
dc.identifier.citedreferenceMotterle A, Pu X, Wood H et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 2012; 21 ( 18 ): p4021 ‐ p4029.
dc.identifier.citedreferenceChen Z, Qian Q, Ma G et al. A common variant on chromosome 9p21 affects the risk of early‐onset coronary artery disease. Mol Biol Rep. 2009; 36 ( 5 ): 889 ‐ 893.
dc.identifier.citedreferenceHelgadottir A, Thorleifsson G, Manolescu A et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007; 316 ( 5830 ): 1491 ‐ 1493.
dc.identifier.citedreferenceHelgadottir A, Thorleifsson G, Magnusson KP et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008; 40 ( 2 ): 217 ‐ 224.
dc.identifier.citedreferenceJohnsen SH, Forsdahl SH, Singh K, Jacobsen BK. Atherosclerosis in abdominal aortic aneurysms: a causal event or a process running in parallel? The Tromsø study. Arterioscler Thromb Vasc Biol. 2010; 30 ( 6 ): 1263 ‐ 1268.
dc.identifier.citedreferenceBradley DT, Hughes AE, Badger SA et al. A variant in LDLR is associated with abdominal aortic aneurysm. Circ Cardiovasc Genet. 2013; 6 ( 5 ): 498 ‐ 504.
dc.identifier.citedreferenceCrawford GE, Holt IE, Mullikin JC et al. Identifying gene regulatory elements by genome‐wide recovery of DNase hypersensitive sites. Proc Natl Acad Sci U S A. 2004; 101 ( 4 ): 992 ‐ 997.
dc.identifier.citedreferenceKim TK, Shiekhattar R. Architectural and functional commonalities between enhancers and promoters. Cell. 2015; 162 ( 5 ): 948 ‐ 959.
dc.identifier.citedreferenceTangirala RK, Rubin EM, Palinski W. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor‐deficient and apolipoprotein E‐deficient mice. J Lipid Res. 1995; 36 ( 11 ): 2320 ‐ 2328.
dc.identifier.citedreferenceWiller CJ, Sanna S, Jackson AU et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008; 40 ( 2 ): 161 ‐ 169.
dc.identifier.citedreferenceAulchenko YS, Ripatti S, Lindqvist I et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. 2009; 41 ( 1 ): 47 ‐ 55.
dc.identifier.citedreferenceGalora S et al. Association of rs1466535 LRP1 but not rs3019885 SLC30A8 and rs6674171 TDRD10 gene polymorphisms with abdominal aortic aneurysm in Italian patients. J Vasc Surg. 2015; 61 ( 3 ): 787 ‐ 792.
dc.identifier.citedreferenceBown MJ, Jones GT, Harrison SC et al. Abdominal aortic aneurysm is associated with a variant in low‐density lipoprotein receptor‐related protein 1. Am J Hum Genet. 2011; 89 ( 5 ): 619 ‐ 627.
dc.identifier.citedreferenceLillis AP, Mikhailenko I, Strickland DK. Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J Thromb Haemost. 2005; 3 ( 8 ): 1884 ‐ 1893.
dc.identifier.citedreferenceBoucher P, Gotthardt M, Li WP, Anderson RG, Herz J. LRP: role in vascular wall integrity and protection from atherosclerosis. Science. 2003; 300 ( 5617 ): 329 ‐ 332.
dc.identifier.citedreferenceStrickland DK, Au DT, Cunfer P, Muratoglu SC. Low‐density lipoprotein receptor‐related protein‐1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol. 2014; 34 ( 3 ): 487 ‐ 498.
dc.identifier.citedreferenceMuratoglu SC, Belgrave S, Hampton B et al. LRP1 protects the vasculature by regulating levels of connective tissue growth factor and HtrA1. Arterioscler Thromb Vasc Biol. 2013; 33 ( 9 ): 2137 ‐ 2146.
dc.identifier.citedreferenceChan CY, Chan YC, Cheuk BL, Cheng SW. A pilot study on low‐density lipoprotein receptor‐related protein‐1 in Chinese patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2013; 46 ( 5 ): 549 ‐ 556.
dc.identifier.citedreferenceGretarsdottir S, Baas AF, Thorleifsson G et al. Genome‐wide association study identifies a sequence variant within the DAB2IP gene conferring susceptibility to abdominal aortic aneurysm. Nat Genet. 2010; 42 ( 8 ): 692 ‐ 697.
dc.identifier.citedreferenceZhang R, He X, Liu W, Lu M, Hsieh JT, Min W. AIP1 mediates TNF‐alpha‐induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14‐3‐3. J Clin Invest. 2003; 111 ( 12 ): 1933 ‐ 1943.
dc.identifier.citedreferenceZhang H, Zhang R, Luo Y, D’Alessio A, Pober JS, Min W. AIP1/DAB2IP, a novel member of the Ras‐GAP family, transduces TRAF2‐induced ASK1‐JNK activation. J Biol Chem. 2004; 279 ( 43 ): 44955 ‐ 44965.
dc.identifier.citedreferenceXie D, Gore C, Zhou J et al. DAB2IP coordinates both PI3K‐Akt and ASK1 pathways for cell survival and apoptosis. Proc Natl Acad Sci U S A. 2009; 106 ( 47 ): 19878 ‐ 19883.
dc.identifier.citedreferenceLuo X, Li C, Tan R et al. A RasGAP, DAB2IP, regulates lipid droplet homeostasis by serving as GAP toward RAB40C. Oncotarget. 2017; 8 ( 49 ): 85415 ‐ 85427.
dc.identifier.citedreferenceElmore JR, Obmann MA, Kuivaniemi H et al. Identification of a genetic variant associated with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide association. J Vasc Surg. 2009; 49 ( 6 ): 1525 ‐ 1531.
dc.identifier.citedreferenceOguro‐Ando A, Zuko A, Kleijer KTE, Burbach JPH. A current view on contactin‐4, −5, and −6: implications in neurodevelopmental disorders. Mol Cell Neurosci. 2017; 81: 72 ‐ 83.
dc.identifier.citedreferenceBouyain S, Watkins DJ. The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci U S A. 2010; 107 ( 6 ): 2443 ‐ 2448.
dc.identifier.citedreferencePahl MC, Erdman R, Kuivaniemi H, Lillvis JH, Elmore JR, Tromp G. Transcriptional (ChIP‐Chip) analysis of ELF1, ETS2, RUNX1 and STAT5 in human abdominal aortic aneurysm. Int J Mol Sci. 2015; 16 ( 5 ): 11229 ‐ 11258.
dc.identifier.citedreferenceDu SJ, Tan X, Zhang J. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec (Hoboken). 2014; 297 ( 9 ): 1650 ‐ 1662.
dc.identifier.citedreferenceHuang J, Perez‐Burgos L, Placek BJ et al. Repression of p53 activity by Smyd2‐mediated methylation. Nature. 2006; 444 ( 7119 ): 629 ‐ 632.
dc.identifier.citedreferenceGao S, Wang Z, Wang W et al. The lysine methyltransferase SMYD2 methylates the kinase domain of type II receptor BMPR2 and stimulates bone morphogenetic protein signaling. J Biol Chem. 2017; 292 ( 30 ): 12702 ‐ 12712.
dc.identifier.citedreferenceDonlin LT, Andresen C, Just S et al. Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev. 2012; 26 ( 2 ): 114 ‐ 119.
dc.identifier.citedreferenceThomenius MJ, Totman J, Harvey D et al. Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation. PLoS One. 2018; 13 ( 6 ): e0197372.
dc.identifier.citedreferenceSesé B, Barrero MJ, Fabregat MC, Sander V, Izpisua Belmonte JC. SMYD2 is induced during cell differentiation and participates in early development. Int J Dev Biol. 2013; 57 ( 5 ): 357 ‐ 364.
dc.identifier.citedreferenceToghill BJ, Saratzis A, Freeman PJ, Sylvius N, UKAGS collaborators, Bown MJ. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells. Clin Epigenetics. 2018; 10: 29.
dc.identifier.citedreferenceXu G, Liu G, Xiong S, Liu H, Chen X, Zheng B. The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL‐6) and tumor necrosis factor α (TNF‐α) production. J Biol Chem. 2015; 290 ( 9 ): 5414 ‐ 5423.
dc.identifier.citedreferenceShah AV, Birdsey GM, Randi AM. Regulation of endothelial homeostasis, vascular development and angiogenesis by the transcription factor ERG. Vascul Pharmacol. 2016; 86: 3 ‐ 13.
dc.identifier.citedreferenceFish JE, Cantu Gutierrez M, Dang LT et al. Dynamic regulation of VEGF‐inducible genes by an ERK/ERG/p300 transcriptional network. Development. 2017; 144 ( 13 ): 2428 ‐ 2444.
dc.identifier.citedreferenceKaneko H, Anzai T, Takahashi T et al. Role of vascular endothelial growth factor‐a in development of abdominal aortic aneurysm. Cardiovasc Res. 2011; 91 ( 2 ): 358 ‐ 367.
dc.identifier.citedreferenceWythe JD, Dang LT, Devine WP et al. ETS factors regulate Vegf‐dependent arterial specification. Dev Cell. 2013; 26 ( 1 ): 45 ‐ 58.
dc.identifier.citedreferenceFrontini MJ, Nong Z, Gros R et al. Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cells. Nat Biotechnol. 2011; 29 ( 5 ): 421 ‐ 427.
dc.identifier.citedreferenceAgrotis A, Kanellakis P, Kostolias G et al. Proliferation of neointimal smooth muscle cells after arterial injury. Dependence on interactions between fibroblast growth factor receptor‐2 and fibroblast growth factor‐9. J Biol Chem. 2004; 279 ( 40 ): 42221 ‐ 42229.
dc.identifier.citedreferenceTowler BP, Jones CI, Newbury SF. Mechanisms of regulation of mature miRNAs. Biochem Soc Trans. 2015; 43 ( 6 ): 1208 ‐ 1214.
dc.identifier.citedreferenceBartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136 ( 2 ): 215 ‐ 233.
dc.identifier.citedreferenceZafari S, Backes C, Leidinger P, Meese E, Keller A. Regulatory microRNA networks: complex patterns of target pathways for disease‐related and housekeeping microRNAs. Genomics Proteomics Bioinformatics. 2015; 13 ( 3 ): 159 ‐ 168.
dc.identifier.citedreferenceMaegdefessel L, Azuma J, Toh R et al. Inhibition of microRNA‐29b reduces murine abdominal aortic aneurysm development. J Clin Invest. 2012; 122 ( 2 ): 497 ‐ 506.
dc.identifier.citedreferenceMaegdefessel L, Azuma J, Tsao PS. MicroRNA‐29b regulation of abdominal aortic aneurysm development. Trends Cardiovasc Med. 2014; 24 ( 1 ): 1 ‐ 6.
dc.identifier.citedreferenceBoon RA, Seeger T, Heydt S et al. MicroRNA‐29 in aortic dilation: implications for aneurysm formation. Circ Res. 2011; 109 ( 10 ): 1115 ‐ 1119.
dc.identifier.citedreferenceDi Gregoli K, Mohamad Anuar NN, Bianco R et al. MicroRNA‐181b controls atherosclerosis and aneurysms through regulation of TIMP‐3 and elastin. Circ Res. 2017; 120 ( 1 ): 49 ‐ 65.
dc.identifier.citedreferenceKim CW, Kumar S, Son DJ, Jang IH, Griendling KK, Jo H. Prevention of abdominal aortic aneurysm by anti‐microRNA‐712 or anti‐microRNA‐205 in angiotensin II‐infused mice. Arterioscler Thromb Vasc Biol. 2014; 34 ( 7 ): 1412 ‐ 1421.
dc.identifier.citedreferenceZampetaki A, Attia R, Mayr U et al. Role of miR‐195 in aortic aneurysmal disease. Circ Res. 2014; 115 ( 10 ): 857 ‐ 866.
dc.identifier.citedreferenceMaegdefessel L, Spin JM, Raaz U et al. miR‐24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun. 2014; 5: 5214.
dc.identifier.citedreferenceNakao T, Horie T, Baba O et al. Genetic ablation of MicroRNA‐33 attenuates inflammation and abdominal aortic aneurysm formation via several anti‐inflammatory pathways. Arterioscler Thromb Vasc Biol. 2017; 37 ( 11 ): 2161 ‐ 2170.
dc.identifier.citedreferenceRangrez AY, Massy ZA, Metzinger‐Le Meuth V, Metzinger L. miR‐143 and miR‐145: molecular keys to switch the phenotype of vascular smooth muscle cells. Circ Cardiovasc Genet. 2011; 4 ( 2 ): 197 ‐ 205.
dc.identifier.citedreferenceLi DY, Busch A, Jin H et al. H19 induces abdominal aortic aneurysm development and progression. Circulation. 2018; 138 ( 15 ): 1551 ‐ 1568.
dc.identifier.citedreferenceSun Y, Zhong L, He X et al. LncRNA H19 promotes vascular inflammation and abdominal aortic aneurysm formation by functioning as a competing endogenous RNA. J Mol Cell Cardiol. 2019; 131: 66 ‐ 81.
dc.identifier.citedreferenceZhang Z, Zou G, Chen X et al. Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model. Mol Cells. 2019; 42 ( 3 ): 218 ‐ 227.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.