Show simple item record

White and Gray Matter Abnormalities in Manifest Huntington’s Disease: Cross- Sectional and Longitudinal Analysis

dc.contributor.authorSweidan, Wafaa
dc.contributor.authorBao, Fen
dc.contributor.authorBozorgzad, Navid‐seraji
dc.contributor.authorGeorge, Edwin
dc.date.accessioned2020-06-03T15:23:51Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-06-03T15:23:51Z
dc.date.issued2020-05
dc.identifier.citationSweidan, Wafaa; Bao, Fen; Bozorgzad, Navid‐seraji ; George, Edwin (2020). "White and Gray Matter Abnormalities in Manifest Huntington’s Disease: Cross- Sectional and Longitudinal Analysis." Journal of Neuroimaging 30(3): 351-358.
dc.identifier.issn1051-2284
dc.identifier.issn1552-6569
dc.identifier.urihttps://hdl.handle.net/2027.42/155528
dc.description.abstractBACKGROUND AND PURPOSEEarly white matter (WM) changes and cortical atrophy in Huntington’s disease (HD) are often evident before disease onset and extend through the brain during manifest stages. The trajectory of these brain abnormalities in symptomatic stages remains relatively unexplored. The aim of this study is to investigate how the pattern of WM and gray matter (GM) alterations progress over time.METHODSWe investigated alterations in brain WM, cortical thickness, and subcortical structures using diffusion and structural magnetic resonance imaging, in manifest HD patients (n = 13) compared to age- matched healthy controls (n = 11). Imaging and clinical data for the HD group were collected at follow- up (7 months) to explore possible longitudinal changes.RESULTSCross- sectional analyses identified significant posterior cortical thinning (P < .05) and symmetric fractional anisotropy (FA) reduction (P < .01) in brain WM of HD group compared to HC. These changes were strongly correlated with impairment in motor symptoms and processing speed. Subcortical atrophy was significant in caudate, putamen, globus pallidus, and thalamus (P < .001). Regions of interest analysis revealed a significant reduction in FA of the corpus callosum (CC) (- 2.19%, P < .05) upon follow- up, whereas no significant cortical thinning and subcortical atrophy was found.CONCLUSIONSThis study showed broad GM and WM abnormalities in manifest HD patients. Reductions in FA and cortical thinning correlated significantly with the disturbances of motor and cognitive processing that describe HD. Follow- up assessment showed that the CC is compromised in the absence of detectable GM changes or motor decline, suggesting it plays an important role in disease progression.
dc.publisherMcGraw- Hill
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHuntington’s disease
dc.subject.otherwhite matter
dc.subject.othercortical thinning
dc.subject.otherclinical markers
dc.titleWhite and Gray Matter Abnormalities in Manifest Huntington’s Disease: Cross- Sectional and Longitudinal Analysis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155528/1/jon12699.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155528/2/jon12699_am.pdf
dc.identifier.doi10.1111/jon.12699
dc.identifier.sourceJournal of Neuroimaging
dc.identifier.citedreferenceMuhlau M, Weindl A, Wolschlager AM, et al. Voxel- based morphometry indicates relative preservation of the limbic prefrontal cortex in early Huntington disease. J Neural Transm 2007; 114: 367 - 72.
dc.identifier.citedreferenceHersch S, Rosas HD, Ferrante RJ. Neuropathology and Pathophysiology of Huntington’s Disease. New York: McGraw- Hill; 2004.
dc.identifier.citedreferenceRosas HD, Salat DH, Lee SY, et al. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 2008; 131: 1057 - 68.
dc.identifier.citedreferenceTabrizi SJ, Scahill RI, Owen G, et al. Predictors of phenotypic progression and disease onset in premanifest and early- stage Huntington’s disease in the TRACK- HD study: analysis of 36- month observational data. Lancet Neurol 2013; 12: 637 - 49.
dc.identifier.citedreferenceStout JC, Paulsen JS, Queller S, et al. Neurocognitive signs in prodromal Huntington disease. Neuropsychology 2011; 25: 1 - 14.
dc.identifier.citedreferenceMcColgan P, Seunarine K, Gregory S, et al. Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington’s disease. JCI Insight 2017; 2: 92641.
dc.identifier.citedreferenceBasser PJ, Mattiello J, LeBihan D. Estimation of the effective self- diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103: 247 - 54.
dc.identifier.citedreferencePoudel GR, Stout JC, Domínguez D JF, et al. Longitudinal change in white matter microstructure in Huntington’s disease: The IMAGE- HD study. Neurobiol Dis 2015; 74: 406 - 12.
dc.identifier.citedreferenceUnified Huntington’s Disease Rating Scale: Reliability and consistency. Huntington study group. Mov Disord 1996; 11: 136 - 42.
dc.identifier.citedreferenceTabrizi SJ, Langbehn DR, Leavitt BR, et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK- HD study: cross- sectional analysis of baseline data. Lancet Neurol 2009; 8: 791 - 801.
dc.identifier.citedreferenceNasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695 - 9.
dc.identifier.citedreferenceSmith A. The Symbol Digit Modalities Test (SDMT): Manual. Los Angeles, CA: WPS; 1973.
dc.identifier.citedreferenceSmith SM, Jenkinson M, Johansen- Berg H, et al. Tract- based spatial statistics: voxelwise analysis of multi- subject diffusion data. Neuroimage 2006; 31: 1487 - 505.
dc.identifier.citedreferenceNichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002; 15: 1 - 25.
dc.identifier.citedreferenceMadhyastha T, Mérillat S, Hirsiger S, et al. Longitudinal reliability of tract- based spatial statistics in diffusion tensor imaging. Hum. Brain Mapp. 2014; 35: 4544 - 55.
dc.identifier.citedreferenceFischl B. FreeSurfer. Neuroimage 2012; 62: 774 - 81.
dc.identifier.citedreferenceR. DellaNave A., Ginestroni C., Tessa M., et al. Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract- based spatial statistics study. Am J Neuroradiol 2012; 31: 1675 - 81.
dc.identifier.citedreferenceBourbon- Teles J, Bells S, Jones DK, et al. Myelin breakdown in human Huntington’s disease: multi- modal evidence from diffusion MRI and quantitative magnetization transfer. Neuroscience 2019; 403: 79 - 92.
dc.identifier.citedreferenceMazerolle E, D’Arcy RC, Beyea SD. Detecting functional magnetic resonance imaging activation in white matter: interhemispheric transfer across the corpus callosum. BMC Neurosci 2008; 9: 84.
dc.identifier.citedreferenceTurken U, Whitfield- Gabrieli S, Bammer R, et al. Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage 2008; 42: 1032 - 44.
dc.identifier.citedreferenceTabrizi SJ, Reilmann R, Roos RA, et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK- HD study: analysis of 24 month observational data. Lancet Neurol 2012; 11: 42 - 53.
dc.identifier.citedreferenceZhang H, Schneider T, Wheeler- Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012; 61: 1000 - 16.
dc.identifier.citedreferenceLeemans A, Jones DK. The B- matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 2009; 61 ( 6 ): 1336 - 1349.
dc.identifier.citedreferenceMacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971 - 83.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.