Show simple item record

Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies

dc.contributor.authorLuecke, Conrad A.
dc.contributor.authorArbic, Brian K.
dc.contributor.authorRichman, James G.
dc.contributor.authorShriver, Jay F.
dc.contributor.authorAlford, Matthew H.
dc.contributor.authorAnsong, Joseph K.
dc.contributor.authorBassette, Steven L.
dc.contributor.authorBuijsman, Maarten C.
dc.contributor.authorMenemenlis, Dimitris
dc.contributor.authorScott, Robert B.
dc.contributor.authorTimko, Patrick G.
dc.contributor.authorVoet, Gunnar
dc.contributor.authorWallcraft, Alan J.
dc.contributor.authorZamudio, Luis
dc.date.accessioned2020-06-03T15:23:58Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-06-03T15:23:58Z
dc.date.issued2020-05
dc.identifier.citationLuecke, Conrad A.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Ansong, Joseph K.; Bassette, Steven L.; Buijsman, Maarten C.; Menemenlis, Dimitris; Scott, Robert B.; Timko, Patrick G.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis (2020). "Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies." Journal of Geophysical Research: Oceans 125(5): n/a-n/a.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/155531
dc.description.abstractTemperature variance and kinetic energy (KE) from two global simulations of the HYbrid Coordinate Ocean Model (HYCOM; 1/12° and 1/25°) and three global simulations of the Massachusetts Institute of Technology general circulation model (MITgcm; 1/12°, 1/24°, and 1/48°), all of which are forced by atmospheric fields and the astronomical tidal potential, are compared with temperature variance and KE from a database of about 2,000 moored historical observations (MHOs). The variances are computed across frequencies ranging from supertidal, dominated by the internal gravity wave continuum, to subtidal, dominated by currents and mesoscale eddies. The most important qualitative difference between HYCOM and MITgcm, and between simulations of different resolutions, is in the supertidal band, where the 1/48° MITgcm lies closest to observations. Across all frequency bands examined, the HYCOM simulations display higher spatial correlation with the MHO than do the MITgcm simulations. The supertidal, semidiurnal, and diurnal velocities in the HYCOM simulations also compare more closely with observations than do the MITgcm simulations in a number of specific continental margin/marginal sea regions. To complement the model‐MHO comparisons, this paper also compares the surface ocean geostrophic eddy KE in HYCOM, MITgcm, and a gridded satellite altimeter product. Consistent with the model‐MHO comparisons, the HYCOM simulations have a higher spatial correlation with the altimeter product than the MITgcm simulations do. On the other hand, the surface ocean geostrophic eddy KE is too large, relative to the altimeter product, in the HYCOM simulations.Key PointsKinetic energy and temperature variance in global HYCOM and MITgcm simulations are compared with moored observationsModel resolution has large impact on the supertidal internal gravity wave continuum bandSpatial correlations with observations are higher in HYCOM than in MITgcm
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press Cambridge
dc.subject.otherembedded tides
dc.subject.othertemperature variance
dc.subject.otherkinetic energy
dc.subject.othermodel‐data comparison
dc.subject.othermodel resolution
dc.subject.otherinternal gravity waves
dc.titleStatistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155531/1/jgrc23937_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155531/2/jgrc23937.pdf
dc.identifier.doi10.1029/2019JC015306
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceRocha, C. B., Gille, S. T., Chereskin, T. K., & Menemenlis, D. ( 2016 ). Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophysical Research Letters, 43, 11,304 – 11,311. https://doi.org/10.1002/2016GL071349
dc.identifier.citedreferenceLarge, W. G., McWilliams, J. C., & Doney, S. C. ( 1994 ). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32 ( 4 ), 363 – 403. https://doi.org/10.1029/94RG01872
dc.identifier.citedreferenceLarge, W., & Yeager, S. ( 2004 ). Diurnal to decadal global forcing for ocean and sea‐ice models: The data sets and flux climatologies (NCAR technical notes). National Center for Atmospheric Research.
dc.identifier.citedreferenceLosch, M., Menemenlis, D., Campin, J.‐M., Heimbach, P., & Hill, C. ( 2010 ). On the formulation of sea‐ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modelling, 33 ( 1 ), 129 – 144. https://doi.org/10.1016/j.ocemod.2009.12.008
dc.identifier.citedreferenceLuecke, C. A., Arbic, B. K., Bassette, S. L., Richman, J. G., Shriver, J. F., Alford, M. H., Smedstad, O. M., Timko, P. G., Trossman, D. S., & Wallcraft, A. J. ( 2017 ). The global mesoscale eddy available potential energy field in models and observations. Journal of Geophysical Research: Oceans, 122, 9126 – 9143. https://doi.org/10.1002/2017JC013136
dc.identifier.citedreferenceSmith, W. H. F., & Sandwell, D. T. ( 1997 ). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277 ( 5334 ), 1956 – 1962. https://doi.org/10.1126/science.277.5334.1956
dc.identifier.citedreferenceMacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S., Sun, O. M., Laurent, L. C. S. t., Simmons, H. L., Polzin, K., Pinkel, R., Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M., Melet, A. V., Mater, B., Legg, S., Large, W. G., Kunze, E., Klymak, J. M., Jochum, M., Jayne, S. R., Hallberg, R. W., Griffies, S. M., Diggs, S., Danabasoglu, G., Chassignet, E. P., Buijsman, M. C., Bryan, F. O., Briegleb, B. P., Barna, A., Arbic, B. K., Ansong, J. K., & Alford, M. H. ( 2017 ). Climate process team on internal wave‐driven ocean mixing. Bulletin of the American Meteorological Society, 98 ( 11 ), 2429 – 2454. https://doi.org/10.1175/BAMS-D-16-0030.1
dc.identifier.citedreferenceMaltrud, M. E., & McClean, J. L. ( 2005 ). An eddy resolving global 1/10 ocean simulation. Ocean Modelling, 8 ( 1‐2 ), 31 – 54. https://doi.org/10.1016/j.ocemod.2003.12.001
dc.identifier.citedreferenceMarshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. ( 1997 ). A finite‐volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research, 102 ( C3 ), 5753 – 5766. https://doi.org/10.1029/96JC02775
dc.identifier.citedreferenceMelet, A., Legg, S., & Hallberg, R. ( 2016 ). Climatic impacts of parameterized local and remote tidal mixing. Journal of Climate, 29 ( 10 ), 3473 – 3500. https://doi.org/10.1175/JCLI-D-15-0153.1
dc.identifier.citedreferenceMenemenlis, D., Campin, J.‐M., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., & Zhang, H. ( 2008 ). ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31, 13 – 21.
dc.identifier.citedreferenceMüller, M., Arbic, B. K., Richman, J. G., Shriver, J. F., Kunze, E. L., Scott, R. B., Wallcraft, A. J., & Zamudio, L. ( 2015 ). Toward an internal gravity wave spectrum in global ocean models. Geophysical Research Letters, 42, 3474 – 3481. https://doi.org/10.1002/2015GL063365
dc.identifier.citedreferenceMunk, W., & Wunsch, C. ( 1998 ). Abyssal recipes II: Energetics of tidal and wind mixing. Deep‐Sea Research I, 45, 1977 – 2010.
dc.identifier.citedreferenceNgodock, H. E., Souopgui, I., Wallcraft, A. J., Richman, J. G., Shriver, J. F., & Arbic, B. K. ( 2016 ). On improving the accuracy of the M 2 barotropic tides embedded in a high‐resolution global ocean circulation model. Ocean Modelling, 97, 16 – 26. https://doi.org/10.1016/j.ocemod.2015.10.011
dc.identifier.citedreferencePenduff, T., Barnier, B., Molines, J.‐M., & Madec, G. ( 2006 ). On the use of current meter data to assess the realism of ocean model simulations. Ocean Modelling, 11, 399 – 416.
dc.identifier.citedreferencePonte, R. M., Chaudhuri, A. H., & Vinogradov, S. V. ( 2015 ). Long‐period tides in an atmospherically driven, stratified ocean. Journal of Physical Oceanography, 45 ( 7 ), 1917 – 1928. https://doi.org/10.1175/JPO-D-15-0006.1
dc.identifier.citedreferenceQiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.‐L., & Menemenlis, D. ( 2018 ). Seasonality in transition scale from balanced to unbalanced motions in the world ocean. Journal of Physical Oceanography, 48 ( 3 ), 591 – 605. https://doi.org/10.1175/JPO-D-17-0169.1
dc.identifier.citedreferenceRay, R. D. ( 1999 ). A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2 (pp. 1 ). distributor Greenbelt M Springfield Va: National Aeronautics and Space Administration, Goddard Space Flight Center; National Technical Information Service,.
dc.identifier.citedreferenceRocha, C. B., Chereskin, T. K., Gille, S. T., & Menemenlis, D. ( 2016 ). Mesoscale to submesoscale wavenumber spectra in Drake Passage. Journal of Physical Oceanography, 46 ( 2 ), 601 – 620. https://doi.org/10.1175/JPO-D-15-0087.1
dc.identifier.citedreferenceSavage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T., Menemenlis, D., O’Rourke, A. K., Richman, J. G., Shriver, J. F., Voet, G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Geophysical Research: Oceans, 122, 7803 – 7821. https://doi.org/10.1002/2017JC013009
dc.identifier.citedreferenceSavage, A. C., Arbic, B. K., Richman, J. G., Shriver, J. F., Alford, M. H., Buijsman, M. C., Thomas Farrar, J., Sharma, H., Voet, G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. Journal of Geophysical Research: Oceans, 122, 2519 – 2538. https://doi.org/10.1002/2016JC012331
dc.identifier.citedreferenceScott, R. B., Arbic, B. K., Chassignet, E. P., Coward, A. C., Maltrud, M., Merryfield, W. J., Srinivasan, A., & Varghese, A. ( 2010 ). Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records. Ocean Modelling, 32, 157 – 169.
dc.identifier.citedreferenceShriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J., Wallcraft, A. J., & Timko, P. G. ( 2012 ). An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model. Journal of Geophysical Research, 117, C10024. https://doi.org/10.1029/2012JC008170
dc.identifier.citedreferenceSilverthorne, K. E., & Toole, J. M. ( 2009 ). Seasonal kinetic energy variability of near‐inertial motions. Journal of Physical Oceanography, 39 ( 4 ), 1035 – 1049. https://doi.org/10.1175/2008JPO3920.1
dc.identifier.citedreferenceSimmons, H. L., & Alford, M. H. ( 2012 ). Simulating the long‐range swell of internal waves generated by ocean storms. Oceanography, 25, 30 – 41.
dc.identifier.citedreferenceSkiba, A. W., Zeng, L., Arbic, B. K., Müller, M., & Godwin, W. J. ( 2013 ). On the resonance and shelf/open‐ocean coupling of the global diurnal tides. Journal of Physical Oceanography, 43 ( 7 ), 1301 – 1324. https://doi.org/10.1175/JPO-D-12-054.1
dc.identifier.citedreferenceStammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrére, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., & Yi, Y. ( 2014 ). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52, 243 – 282. https://doi.org/10.1002/2014RG000450
dc.identifier.citedreferenceSu, Z., Wang, J., Klein, P., Thompson, A. F., & Menemenlis, D. ( 2018 ). Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9 ( 1 ), 775. https://doi.org/10.1038/s41467-018-02983-w
dc.identifier.citedreferenceThoppil, P. G., Richman, J. G., & Hogan, P. J. ( 2011 ). Energetics of a global ocean circulation model compared to observations. Geophysical Research Letters, 38, L15607. https://doi.org/10.1029/2011GL048347
dc.identifier.citedreferenceTimko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Skill tests of three‐dimensional tidal currents in a global ocean model: A look at the North Atlantic. Journal of Geophysical Research, 117, C08014. https://doi.org/10.1029/2011JC007617
dc.identifier.citedreferenceTimko, P. G., Arbic, B. K., Richman, J. G., Scott, R. B., Metzger, E. J., & Wallcraft, A. J. ( 2013 ). Skill testing a three‐dimensional global tide model to historical current meter records. Journal of Geophysical Research: Oceans, 118, 6914 – 6933. https://doi.org/10.1002/2013JC009071
dc.identifier.citedreferenceTorres, H. S., Klein, P., Menemenlis, D., Qiu, B., Su, Z., Wang, J., Chen, S., & Fu, L.‐L. ( 2018 ). Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. Journal of Geophysical Research: Oceans, 123, 8084 – 8105. https://doi.org/10.1029/2018JC014438
dc.identifier.citedreferenceWang, J., Fu, L.‐L., Qiu, B., Menemenlis, D., Farrar, J. T., Chao, Y., Thompson, A. F., & Flexas, M. M. ( 2018 ). An observing system simulation experiment for the calibration and validation of the surface water ocean topography sea surface height measurement using in situ platforms. Journal of Atmospheric and Oceanic Technology, 35 ( 2 ), 281 – 297. https://doi.org/10.1175/JTECH-D-17-0076.1
dc.identifier.citedreferenceWang, J., Fu, L.‐L., Torres, H. S., Chen, S., Qiu, B., & Menemenlis, D. ( 2019 ). On the spatial scales to be resolved by the surface water and ocean topography Ka‐band radar interferometer. Journal of Atmospheric and Oceanic Technology, 36 ( 1 ), 87 – 99. https://doi.org/10.1175/JTECH-D-18-0119.1
dc.identifier.citedreferenceWeis, P., Thomas, M., & Sündermann, J. ( 2008 ). Broad frequency tidal dynamics simulated by a high‐resolution global ocean tide model forced by ephemerides. Journal of Geophysical Research, 113, C10029. https://doi.org/10.1029/2007JC004556
dc.identifier.citedreferenceWright, C. J., Scott, R. B., Ailliot, P., & Furnival, D. ( 2014 ). Lee wave generation rates in the deep ocean. Geophysical Research Letters, 41, 2434 – 2440. https://doi.org/10.1002/2013GL059087
dc.identifier.citedreferenceYu, X., Ponte, A. L., Elipot, S., Menemenlis, D., Zaron, E. D., & Abernathey, R. ( 2019 ). Surface kinetic energy distributions in the global oceans from a high‐resolution numerical model and surface drifter observations. Geophysical Research Letters, 46, 9757 – 9766. https://doi.org/10.1029/2019GL083074
dc.identifier.citedreferenceAnsong, J. K., Arbic, B. K., Alford, M. H., Buijsman, M. C., Shriver, J. F., Zhao, Z., Richman, J. G., Simmons, H. L., Timko, P. G., Wallcraft, A. J., & Zamudio, L. ( 2017 ). Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations. Journal of Geophysical Research: Oceans, 122, 1882 – 1900. https://doi.org/10.1002/2016JC012184
dc.identifier.citedreferenceAnsong, J. K., Arbic, B. K., Buijsman, M. C., Richman, J. G., Shriver, J. F., & Wallcraft, A. J. ( 2015 ). Indirect evidence for substantial damping of low‐mode internal tides in the open ocean. Journal of Geophysical Research: Oceans, 120, 6057 – 6071. https://doi.org/10.1002/2015JC010998
dc.identifier.citedreferenceArbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A., Menemenlis, D., Metzger, E. J., Müller, M., Nelson, A. D., Nelson, B. C., Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott, R. B., Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft, A. J., Zamudio, L., & Zhao, Z. ( 2018 ). A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm. New Frontiers In Operational Oceanography. Retrieved from http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1536242074_55feafcc
dc.identifier.citedreferenceArbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Metzger, E. J., & Wallcraft, A. J. ( 2012 ). Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25, 20 – 29. https://doi.org/10.5670/oceanog.2012.38
dc.identifier.citedreferenceArbic, B. K., Wallcraft, A. J., & Metzger, E. J. ( 2010 ). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32, 175 – 187. https://doi.org/10.1016/j.ocemod.2010.01.007
dc.identifier.citedreferenceBuijsman, M. C., Ansong, J. K., Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Wallcraft, A. J., Whalen, C. B., & Zhao, Z. ( 2016 ). Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. Journal of Physical Oceanography, 46 ( 5 ), 1399 – 1419. https://doi.org/10.1175/JPO-D-15-0074.1
dc.identifier.citedreferenceBuijsman, M., Arbic, B., Green, J., Helber, R., Richman, J., Shriver, J., Timko, P., & Wallcraft, A. ( 2015 ). Optimizing internal wave drag in a forward barotropic model with semidiurnal tides. Ocean Modelling, 85, 42 – 55. https://doi.org/10.1016/j.ocemod.2014.11.003
dc.identifier.citedreferenceCapet, X., McWilliams, J. C., Molemaker, M. J., & Shchepetkin, A. F. ( 2008 ). Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux. Journal of Physical Oceanography, 38 ( 10 ), 2256 – 2269. https://doi.org/10.1175/2008JPO3810.1
dc.identifier.citedreferenceCartwright, D. E. ( 1999 ). Tides: A scientific history (pp. 210 ). New York: Cambridge University Press Cambridge.
dc.identifier.citedreferenceChassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings, J. A., Halliwell, G. R., Bleck, R., Baraille, R., Wallcraft, A. J., Lozano, C., Tolman, H. L., Srinivasan, A., Hankin, S., Cornillon, P., Weisberg, R., Barth, A., He, R., Werner, F., & Wilkin, J. ( 2009 ). US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22 ( 2 ), 64 – 75. https://doi.org/10.5670/oceanog.2009.39
dc.identifier.citedreferenceChassignet, E. P., & Xu, X. ( 2017 ). Impact of horizontal resolution (1/12 to 1/50) on gulf stream separation, penetration, and variability. Journal of Physical Oceanography, 47 ( 8 ), 1999 – 2021. https://doi.org/10.1175/JPO-D-17-0031.1
dc.identifier.citedreferenceDee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.‐J., Park, B.‐K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.‐N., & Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 ( 656 ), 553 – 597. https://doi.org/10.1002/qj.828
dc.identifier.citedreferenceDoherty, K. W., Frye, D. E., Liberatore, S. P., & Toole, J. M. ( 1999 ). A moored profiling instrument. Journal of Atmospheric and Oceanic Technology, 16, 1816 – 1829.
dc.identifier.citedreferenceDucet, N. P., Traon, Y. L., & Reverdin, G. ( 2000 ). Global high‐resolution mapping of ocean circulation from TOPEX/Poseidon and ERS‐1 and ‐2. Journal of Geophysical Research, 105 ( C8 ), 19,477 – 19,498. https://doi.org/10.1029/2000JC900063
dc.identifier.citedreferenceEgbert, G. D., Bennett, A. F., & Foreman, M. G. G. ( 1994 ). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research, 99 ( C12 ), 24,821 – 24,852. https://doi.org/10.1029/94JC01894
dc.identifier.citedreferenceEgbert, G. D., & Erofeeva, S. Y. ( 2002 ). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19 ( 2 ), 183 – 204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
dc.identifier.citedreferenceGarrett, C., & Kunze, E. ( 2007 ). Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39 ( 1 ), 57 – 87. https://doi.org/10.1146/annurev.fluid.39.050905.110227
dc.identifier.citedreferenceHecht, W. M., & Hasumi, H. ( 2008 ). Ocean modeling in an eddying regime, Geophysical monograph (Vol.  177 ). 2000 Florida Avenue N. W Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceHendershott, M. C. ( 1972 ). The effects of solid earth deformation on global ocean tides. Geophysical Journal of the Royal Astronomical Society, 29 ( 4 ), 389 – 402. https://doi.org/10.1111/j.1365-246X.1972.tb06167.x
dc.identifier.citedreferenceHogan, T. F., Liu, M., Ridout, J. A., Peng, M. S., Whitcomb, T. R., Ruston, B. C., Reynolds, C. A., Eckermann, S. D., Moskaitis, J. R., Baker, N. L., McCormack, P., Viner, J. L. C., McLay, J. G., Flatau, M. K., Xu, L., Chen, C., & Chang, S. W. ( 2014 ). The Navy Global Environmental Model. Oceanography, 27 ( 3 ), 116 – 125.
dc.identifier.citedreferenceJakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H. W., & Johnson, P. ( 2008 ). An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters, 35, L07602. https://doi.org/10.1029/2008GL033520
dc.identifier.citedreferenceJayne, S. R., & Laurent, L. C. S. t. ( 2001 ). Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28 ( 5 ), 811 – 814. https://doi.org/10.1029/2000GL012044
dc.identifier.citedreferenceKokoska, S., & Zwillinger, D. ( 2000 ). Standard probability and statistics tables and formulae. Boca Raton: Chapman & Hall‐CRC.
dc.identifier.citedreferenceKunze, E. ( 2017 ). The internal‐wave‐driven meridional overturning circulation. Journal of Physical Oceanography, 47 ( 11 ), 2673 – 2689. https://doi.org/10.1175/JPO-D-16-0142.1
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.