Show simple item record

Catalysis and Electron Transfer in De Novo Designed Helical Scaffolds

dc.contributor.authorPinter, Tyler B. J.
dc.contributor.authorKoebke, Karl J.
dc.contributor.authorPecoraro, Vincent L.
dc.date.accessioned2020-06-03T15:24:11Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-06-03T15:24:11Z
dc.date.issued2020-05-11
dc.identifier.citationPinter, Tyler B. J.; Koebke, Karl J.; Pecoraro, Vincent L. (2020). "Catalysis and Electron Transfer in De Novo Designed Helical Scaffolds." Angewandte Chemie International Edition 59(20): 7678-7699.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/155539
dc.description.abstractThe relationship between protein structure and function is one of the greatest puzzles within biochemistry. De novo metalloprotein design is a way to wipe the board clean and determine what is required to build in function from the ground up in an unrelated structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha‐helical scaffolds. Examples of successful designs include those with carbonic anhydrase or nitrite reductase activity by incorporating a ZnHis3 or CuHis3 site, or that recapitulate the spectroscopic properties of unique electron‐transfer sites in cupredoxins (CuHis2Cys) or rubredoxins (FeCys4). This work showcases the versatility of alpha helices as scaffolds for metalloprotein design and the progress that is possible through careful rational design. Our studies cover the invariance of carbonic anhydrase activity with different site positions and scaffolds, refinement of our cupredoxin models, and enhancement of nitrite reductase activity up to 1000‐fold.Designer proteins: The de novo design of metalloproteins allows the determination of what is required to build in function in an unrelated protein structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha‐helical scaffolds; it showcases the versatility of alpha helices as scaffolds for metalloprotein design as well as the progress that is possible through rational design.
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprotein design
dc.subject.othertransition metals
dc.subject.othermetalloproteins
dc.subject.otherhelical structures
dc.subject.otherenzymes
dc.titleCatalysis and Electron Transfer in De Novo Designed Helical Scaffolds
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155539/1/anie201907502_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155539/2/anie201907502.pdf
dc.identifier.doi10.1002/anie.201907502
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceL. Basumallick, R. Sarangi, S. DeBeer George, B. Elmore, A. B. Hooper, B. Hedman, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 2005, 127, 3531 – 3544.
dc.identifier.citedreferenceB. A. Smith, M. H. Hecht, Curr. Opin. Chem. Biol. 2011, 15, 421 – 426.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. S. Plegaria, C. Herrero, A. Quaranta, V. L. Pecoraro, Biochim. Biophys. Acta Bioenerg. 2016, 1857, 522 – 530;
dc.identifier.citedreferenceA. G. Tebo, A. Quaranta, C. Herrero, V. L. Pecoraro, A. Aukauloo, ChemPhotoChem 2017, 1, 89 – 92.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. R. Winkler, P. Wittung-Stafshede, J. Leckner, B. G. Malmström, H. B. Gray, Proc. Natl. Acad. Sci. USA 1997, 94, 4246 – 4249;
dc.identifier.citedreferenceA. J. Di Bilio, M. G. Hill, N. Bonander, B. G. Karlsson, R. M. Villahermosa, B. G. Malmström, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 1997, 119, 9921 – 9922;
dc.identifier.citedreferenceL. K. Skov, T. Pascher, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 1998, 120, 1102 – 1103;
dc.identifier.citedreferenceK. Sigfridsson, M. Ejdebäck, M. Sundahl, Ö. Hansson, Arch. Biochem. Biophys. 1998, 351, 197 – 206;
dc.identifier.citedreferenceT. M. McCleskey, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 1992, 114, 6935 – 6937.
dc.identifier.citedreferenceJ. L. Dempsey, J. R. Winkler, H. B. Gray, Chem. Rev. 2010, 110, 7024 – 7039.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. B. Gray, J. R. Winkler, Chem. Phys. Lett. 2009, 483, 1 – 9;
dc.identifier.citedreferenceH. B. Gray, J. R. Winkler, Q. Rev. Biophys. 2003, 36, 341 – 372;
dc.identifier.citedreferenceC. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, P. L. Dutton, Nature 1992, 355, 796 – 802.
dc.identifier.citedreferenceB. A. Barry, J. Photochem. Photobiol. B 2011, 104, 60 – 71.
dc.identifier.citedreferenceW. T. Dixon, D. Murphy, J. Chem. Soc. Faraday Trans. 2 1976, 72, 1221 – 1230.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. W. Berry, M. C. Martínez-Rivera, C. Tommos, Proc. Natl. Acad. Sci. USA 2012, 109, 9739 – 9743;
dc.identifier.citedreferenceS. D. Glover, C. Jorge, L. Liang, K. G. Valentine, L. Hammarström, C. Tommos, J. Am. Chem. Soc. 2014, 136, 14039 – 14051.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. P. Candeias, S. Turconi, J. H. A. Nugent, Biochim. Biophys. Acta Bioenerg. 1998, 1363, 1 – 5;
dc.identifier.citedreferenceA. A. Pizano, D. A. Lutterman, P. G. Holder, T. S. Teets, J. Stubbe, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2012, 109, 39 – 43.
dc.identifier.citedreferenceC. C. Moser, P. L. Dutton, Biochim. Biophys. Acta Bioenerg. 1992, 1101, 171 – 176.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. J. Waldron, J. C. Rutherford, D. Ford, N. J. Robinson, Nature 2009, 460, 823;
dc.identifier.citedreferenceI. Bertini, A. Sigel, Handbook on Metalloproteins, CRC Press, Boca Raton, FL, 2001;
dc.identifier.citedreferenceC. Andreini, I. Bertini, G. Cavallaro, G. L. Holliday, J. M. Thornton, J. Biol. Inorg. Chem. 2008, 13, 1205 – 1218.
dc.identifier.citedreferenceC. Andreini, I. Bertini, A. Rosato, Acc. Chem. Res. 2009, 42, 1471 – 1479.
dc.identifier.citedreference 
dc.identifier.citedreferenceP.-S. Huang, S. E. Boyken, D. Baker, Nature 2016, 537, 320;
dc.identifier.citedreferenceF. Yu, V. M. Cangelosi, M. L. Zastrow, M. Tegoni, J. S. Plegaria, A. G. Tebo, C. S. Mocny, L. Ruckthong, H. Qayyum, V. L. Pecoraro, Chem. Rev. 2014, 114, 3495 – 3578;
dc.identifier.citedreferenceY. Lu, S. M. Berry, T. D. Pfister, Chem. Rev. 2001, 101, 3047 – 3080;
dc.identifier.citedreferenceY. Lu, N. Yeung, N. Sieracki, N. M. Marshall, Nature 2009, 460, 855;
dc.identifier.citedreferenceJ. Kaplan, W. F. DeGrado, Proc. Natl. Acad. Sci. USA 2004, 101, 11566 – 11570.
dc.identifier.citedreferenceD. N. Woolfson, G. J. Bartlett, A. J. Burton, J. W. Heal, A. Niitsu, A. R. Thomson, C. W. Wood, Curr. Opin. Struct. Biol. 2015, 33, 16 – 26.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. P. Schneider, A. Lombardi, W. F. DeGrado, Fold. Des. 1998, 3, R29 – R40;
dc.identifier.citedreferenceE. Moutevelis, D. N. Woolfson, J. Mol. Biol. 2009, 385, 726 – 732.
dc.identifier.citedreferenceB. Lovejoy, S. Choe, D. Cascio, D. McRorie, W. F. DeGrado, D. Eisenberg, Science 1993, 259, 1288 – 1293.
dc.identifier.citedreferenceR. S. Hodges, A. K. Saund, P. C. Chong, S. A. St-Pierre, R. E. Reid, J. Biol. Chem. 1981, 256, 1214 – 1224.
dc.identifier.citedreferenceG. R. Dieckmann, D. K. McRorie, D. L. Tierney, L. M. Utschig, C. P. Singer, T. V. O’Halloran, J. E. Penner-Hahn, W. F. DeGrado, V. L. Pecoraro, J. Am. Chem. Soc. 1997, 119, 6195 – 6196.
dc.identifier.citedreferenceK. J. Koebke, L. Ruckthong, J. L. Meagher, E. Mathieu, J. Harland, A. Deb, N. Lehnert, C. Policar, C. Tard, J. E. Penner-Hahn, Inorg. Chem. 2018, 57, 12291 – 12302.
dc.identifier.citedreferenceM. L. Zastrow, A. F. Peacock, J. A. Stuckey, V. L. Pecoraro, Nat. Chem. 2012, 4, 118.
dc.identifier.citedreferenceJ. S. Plegaria, S. P. Dzul, E. R. Zuiderweg, T. L. Stemmler, V. L. Pecoraro, Biochemistry 2015, 54, 2858 – 2873.
dc.identifier.citedreferenceR. H. Holm, P. Kennepohl, E. I. Solomon, Chem. Rev. 1996, 96, 2239 – 2314.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Liu, S. Chakraborty, P. Hosseinzadeh, Y. Yu, S. Tian, I. Petrik, A. Bhagi, Y. Lu, Chem. Rev. 2014, 114, 4366 – 4469;
dc.identifier.citedreferenceS. Shaik, A. W. Munro, S. Sen, C. Mowat, W. Nam, E. Derat, T. Bugg, D. A. Proshlyakov, R. P. Hausinger, G. D. Straganz, Iron-containing enzymes: Versatile catalysts of hydroxylation reactions in nature, Royal Society of Chemistry, London, 2011;
dc.identifier.citedreferenceR. Lill, Nature 2009, 460, 831;
dc.identifier.citedreferenceC. Andreini, V. Putignano, A. Rosato, L. Banci, Metallomics 2018, 10, 1223 – 1231.
dc.identifier.citedreference 
dc.identifier.citedreferenceK.-H. Lee, M. Matzapetakis, S. Mitra, E. N. G. Marsh, V. L. Pecoraro, J. Am. Chem. Soc. 2004, 126, 9178 – 9179;
dc.identifier.citedreferenceL. Ruckthong, A. Deb, L. Hemmingsen, J. E. Penner-Hahn, V. L. Pecoraro, J. Biol. Inorg. Chem. 2018, 23, 123 – 135;
dc.identifier.citedreferenceA. F. Peacock, L. Hemmingsen, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2008, 105, 16566 – 16571;
dc.identifier.citedreferenceA. F. Peacock, J. A. Stuckey, V. L. Pecoraro, Angew. Chem. Int. Ed. 2009, 48, 7371 – 7374; Angew. Chem. 2009, 121, 7507 – 7510.
dc.identifier.citedreferenceK. Håkansson, M. Carlsson, L. A. Svensson, A. Liljas, J. Mol. Biol. 1992, 227, 1192 – 1204.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. Kimura, T. Shiota, T. Koike, M. Shiro, M. Kodama, J. Am. Chem. Soc. 1990, 112, 5805 – 5811;
dc.identifier.citedreferenceC. P. Olmo, K. Böhmerle, H. Vahrenkamp, Inorg. Chim. Acta 2007, 360, 1510 – 1516;
dc.identifier.citedreferenceT. B. Koerner, R. Brown, Can. J. Chem. 2002, 80, 183 – 191.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. L. Kiefer, S. A. Paterno, C. A. Fierke, J. Am. Chem. Soc. 1995, 117, 6831 – 6837;
dc.identifier.citedreferenceJ. F. Krebs, J. Ippolito, D. Christianson, C. Fierke, J. Biol. Chem. 1993, 268, 27458 – 27466;
dc.identifier.citedreferenceZ. Liang, Y. Xue, G. Behravan, B. H. Jonsson, S. Lindskog, Eur. J. Biochem. 1993, 211, 821 – 827.
dc.identifier.citedreferenceB. S. Der, D. R. Edwards, B. Kuhlman, Biochemistry 2012, 51, 3933 – 3940.
dc.identifier.citedreferenceM. L. Zastrow, V. L. Pecoraro, J. Am. Chem. Soc. 2013, 135, 5895 – 5903.
dc.identifier.citedreferenceA. E. Eriksson, T. A. Jones, A. Liljas, Proteins Struct. Funct. Bioinf. 1988, 4, 274 – 282.
dc.identifier.citedreferenceM. Matzapetakis, B. T. Farrer, T.-C. Weng, L. Hemmingsen, J. E. Penner-Hahn, V. L. Pecoraro, J. Am. Chem. Soc. 2002, 124, 8042 – 8054.
dc.identifier.citedreferenceV. M. Cangelosi, A. Deb, J. E. Penner-Hahn, V. L. Pecoraro, Angew. Chem. Int. Ed. 2014, 53, 7900 – 7903; Angew. Chem. 2014, 126, 8034 – 8037.
dc.identifier.citedreferenceJ. E. Jackman, K. M. Merz, C. A. Fierke, Biochemistry 1996, 35, 16421 – 16428.
dc.identifier.citedreferenceD. A. Jewell, C. Tu, S. R. Paranawithana, S. M. Tanhauser, P. V. LoGrasso, P. J. Laipis, D. N. Silverman, Biochemistry 1991, 30, 1484 – 1490.
dc.identifier.citedreferenceL. Koziol, C. A. Valdez, S. E. Baker, E. Y. Lau, W. C. Floyd   III, S. E. Wong, J. H. Satcher,  Jr, F. C. Lightstone, R. D. Aines, Inorg. Chem. 2012, 51, 6803 – 6812.
dc.identifier.citedreferenceK. Nakata, N. Shimomura, N. Shiina, M. Izumi, K. Ichikawa, M. Shiro, J. Inorg. Biochem. 2002, 89, 255 – 266.
dc.identifier.citedreferenceH. Slebocka-Tilk, J. Cocho, Z. Frackman, R. Brown, J. Am. Chem. Soc. 1984, 106, 2421 – 2431.
dc.identifier.citedreferenceC. A. Fierke, T. L. Calderone, J. F. Krebs, Biochemistry 1991, 30, 11054 – 11063.
dc.identifier.citedreferenceS. Studer, D. A. Hansen, Z. L. Pianowski, P. R. Mittl, A. Debon, S. L. Guffy, B. S. Der, B. Kuhlman, D. Hilvert, Science 2018, 362, 1285 – 1288.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. J. Song, F. A. Tezcan, Science 2014, 346, 1525 – 1528;
dc.identifier.citedreferenceJ. D. Brodin, A. Medina-Morales, T. Ni, E. N. Salgado, X. I. Ambroggio, F. A. Tezcan, J. Am. Chem. Soc. 2010, 132, 8610 – 8617.
dc.identifier.citedreferenceC. M. Rufo, Y. S. Moroz, O. V. Moroz, J. Stöhr, T. A. Smith, X. Hu, W. F. DeGrado, I. V. Korendovych, Nat. Chem. 2014, 6, 303.
dc.identifier.citedreferenceL. Ruckthong, M. L. Zastrow, J. A. Stuckey, V. L. Pecoraro, J. Am. Chem. Soc. 2016, 138, 11979 – 11988.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Iwasaki, S. Noji, S. Shidara, J. Biochem. 1975, 78, 355 – 361;
dc.identifier.citedreferenceE. Libby, B. A. Averill, Biochem. Biophys. Res. Commun. 1992, 187, 1529 – 1535;
dc.identifier.citedreferenceM. Kukimoto, M. Nishiyama, M. E. Murphy, S. Turley, E. T. Adman, S. Horinouchi, T. Beppu, Biochemistry 1994, 33, 5246 – 5252;
dc.identifier.citedreferenceM. E. Murphy, S. Turley, E. T. Adman, J. Biol. Chem. 1997, 272, 28455 – 28460.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. V. Antonyuk, R. W. Strange, G. Sawers, R. R. Eady, S. S. Hasnain, Proc. Natl. Acad. Sci. USA 2005, 102, 12041 – 12046;
dc.identifier.citedreferenceK. Kataoka, H. Furusawa, K. Takagi, K. Yamaguchi, S. Suzuki, J. Biochem. 2000, 127, 345 – 350;
dc.identifier.citedreferenceM. J. Boulanger, M. Kukimoto, M. Nishiyama, S. Horinouchi, M. E. Murphy, J. Biol. Chem. 2000, 275, 23957 – 23964.
dc.identifier.citedreferenceM. Tegoni, F. Yu, M. Bersellini, J. E. Penner-Hahn, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2012, 109, 21234 – 21239.
dc.identifier.citedreferenceL. S. Kau, D. J. Spira-Solomon, J. E. Penner-Hahn, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 1987, 109, 6433 – 6442.
dc.identifier.citedreferenceE. Prenesti, P. G. Daniele, M. Prencipe, G. Ostacoli, Polyhedron 1999, 18, 3233 – 3241.
dc.identifier.citedreferenceK. Olesen, A. Veselov, Y. Zhao, Y. Wang, B. Danner, C. P. Scholes, J. P. Shapleigh, Biochemistry 1998, 37, 6086 – 6094.
dc.identifier.citedreference 
dc.identifier.citedreferenceF. Jacobson, A. Pistorius, D. Farkas, W. De Grip, Ö. Hansson, L. Sjölin, R. Neutze, J. Biol. Chem. 2007, 282, 6347 – 6355;
dc.identifier.citedreferenceS. Suzuki, K. Yamaguchi, K. Kataoka, K. Kobayashi, S. Tagawa, T. Kohzuma, S. Shidara, H. Iwasaki, J. Biol. Inorg. Chem. 1997, 2, 265 – 274.
dc.identifier.citedreferenceE. Monzani, G. A. A. Koolhaas, A. Spandre, E. Leggieri, L. Casella, M. Gullotti, G. Nardin, L. Randaccio, M. Fontani, P. Zanello, J. Biol. Inorg. Chem. 2000, 5, 251 – 261.
dc.identifier.citedreferenceA. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, M. H. Olsson, Chem. Rev. 2006, 106, 3210 – 3235.
dc.identifier.citedreferenceS. D. Fried, S. Bagchi, S. G. Boxer, Science 2014, 346, 1510 – 1514.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Zwanzig, J. Chem. Phys. 1992, 97, 3587 – 3589;
dc.identifier.citedreferenceW. Min, B. P. English, G. Luo, B. J. Cherayil, S. Kou, X. S. Xie, Acc. Chem. Res. 2005, 38, 923 – 931.
dc.identifier.citedreferenceM. R. Ross, A. M. White, F. Yu, J. T. King, V. L. Pecoraro, K. J. Kubarych, J. Am. Chem. Soc. 2015, 137, 10164 – 10176.
dc.identifier.citedreferenceM. Lim, P. Hamm, R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 1998, 95, 15315 – 15320.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Churg, A. Warshel, Biochemistry 1986, 25, 1675 – 1681;
dc.identifier.citedreferenceD. Kuila, J. A. Fee, J. Biol. Chem. 1986, 261, 2768 – 2771;
dc.identifier.citedreferenceR. Varadarajan, T. E. Zewert, H. B. Gray, S. G. Boxer, Science 1989, 243, 69 – 72.
dc.identifier.citedreferenceE. E. Chufán, S. T. Prigge, X. Siebert, B. A. Eipper, R. E. Mains, L. M. Amzel, J. Am. Chem. Soc. 2010, 132, 15565 – 15572.
dc.identifier.citedreferenceF. Yu, J. E. Penner-Hahn, V. L. Pecoraro, J. Am. Chem. Soc. 2013, 135, 18096 – 18107.
dc.identifier.citedreferenceH. B. Gray, B. G. Malmström, Comments Inorg. Chem. 1983, 2, 203 – 209.
dc.identifier.citedreference 
dc.identifier.citedreferenceO. Iranzo, C. Cabello, V. L. Pecoraro, Angew. Chem. Int. Ed. 2007, 46, 6688 – 6691; Angew. Chem. 2007, 119, 6808 – 6811;
dc.identifier.citedreferenceV. S. Oganesyan, S. J. George, M. R. Cheesman, A. J. Thomson, J. Chem. Phys. 1999, 110, 762 – 777;
dc.identifier.citedreferenceK. H. Lee, C. Cabello, L. Hemmingsen, E. N. G. Marsh, V. L. Pecoraro, Angew. Chem. Int. Ed. 2006, 45, 2864 – 2868; Angew. Chem. 2006, 118, 2930 – 2934.
dc.identifier.citedreferenceK. J. Koebke, F. Yu, E. Salerno, C. Van Stappen, A. G. Tebo, J. E. Penner-Hahn, V. L. Pecoraro, Angew. Chem. Int. Ed. 2018, 57, 3954 – 3957; Angew. Chem. 2018, 130, 4018 – 4021.
dc.identifier.citedreferenceY. Fukuda, K. M. Tse, T. Nakane, T. Nakatsu, M. Suzuki, M. Sugahara, S. Inoue, T. Masuda, F. Yumoto, N. Matsugaki, Proc. Natl. Acad. Sci. USA 2016, 113, 2928 – 2933.
dc.identifier.citedreferenceS. T. Prigge, A. S. Kolhekar, B. A. Eipper, R. E. Mains, L. M. Amzel, Science 1997, 278, 1300 – 1305.
dc.identifier.citedreferenceK. J. Koebke, F. Yu, C. Van Stappen, T. B. Pinter, A. Deb, J. E. Penner-Hahn, V. L. Pecoraro, J. Am. Chem. Soc. 2019, 141, 7765 – 7775.
dc.identifier.citedreferenceM. Tanokura, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1983, 742, 576 – 585.
dc.identifier.citedreferenceM. Tegoni, F. Yu, M. Bersellini, J. E. Penner-Hahn, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2012, 109, 21234 – 21239.
dc.identifier.citedreferenceK. J. Koebke, F. Yu, E. Salerno, C. V. Stappen, A. G. Tebo, J. E. Penner-Hahn, V. L. Pecoraro, Angew. Chem. Int. Ed. 2018, 57, 3954 – 3957; Angew. Chem. 2018, 130, 4018 – 4021.
dc.identifier.citedreferenceN. Isoda, H. Yokoyama, M. Nojiri, S. Suzuki, K. Yamaguchi, Bioelectrochemistry 2010, 77, 82 – 88.
dc.identifier.citedreferenceE. I. Tocheva, L. D. Eltis, M. E. P. Murphy, Biochemistry 2008, 47, 4452 – 4460.
dc.identifier.citedreferenceN. G. H. Leferink, C. Han, S. V. Antonyuk, D. J. Heyes, S. E. J. Rigby, M. A. Hough, R. R. Eady, N. S. Scrutton, S. S. Hasnain, Biochemistry 2011, 50, 4121 – 4131.
dc.identifier.citedreferenceA. E. Tolbert, C. S. Ervin, L. Ruckthong, T. J. Paul, V. M. Jayasinghe-Arachchige, K. P. Neupane, J. A. Stuckey, R. Prabhakar, V. L. Pecoraro, Nat. Chem. 2019, in press.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Lovenberg, B. E. Sobel, Proc. Natl. Acad. Sci. USA 1965, 54, 193 – 199;
dc.identifier.citedreferenceP. Bertrand, J.-P. Gayda, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1988, 954, 347 – 350;
dc.identifier.citedreferenceR. G. Shulman, P. Eisenberger, W. E. Blumberg, N. A. Stombaugh, Proc. Natl. Acad. Sci. USA 1975, 72, 4003 – 4007;
dc.identifier.citedreferenceB. Bunker, E. A. Stern, Biophys. J. 1977, 19, 253 – 264;
dc.identifier.citedreferenceN. M. Atherton, K. Garbett, R. D. Gillard, R. Mason, S. J. Mayhew, J. L. Peel, J. E. Stangroom, Nature 1966, 212, 590 – 593;
dc.identifier.citedreferenceH. Bönisch, C. L. Schmidt, P. Bianco, R. Ladenstein, J. Biol. Inorg. Chem. 2007, 12, 1163 – 1171.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. C. Lee, W. Lo, R. H. Holm, Chem. Rev. 2014, 114, 3579 – 3600;
dc.identifier.citedreferenceD. L. Gerlach, D. Coucouvanis, J. Kampf, N. Lehnert, Eur. J. Inorg. Chem. 2013, 5253 – 5264.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Jacques, M. Clémancey, G. Blondin, V. Fourmond, J.-M. Latour, O. Sénèque, Chem. Commun. 2013, 49, 2915 – 2917;
dc.identifier.citedreferenceV. Nanda, M. M. Rosenblatt, A. Osyczka, H. Kono, Z. Getahun, P. L. Dutton, J. G. Saven, W. F. DeGrado, J. Am. Chem. Soc. 2005, 127, 5804 – 5805;
dc.identifier.citedreferenceA. Jacques, J.-M. Latour, O. Sénèque, Dalton Trans. 2014, 43, 3922 – 3930;
dc.identifier.citedreferenceE. Farinas, L. Regan, Protein Sci. 1998, 7, 1939 – 1946;
dc.identifier.citedreferenceD. E. Benson, M. S. Wisz, W. Liu, H. W. Hellinga, Biochemistry 1998, 37, 7070 – 7076.
dc.identifier.citedreferenceA. G. Tebo, T. B. J. Pinter, R. García-Serres, A. L. Speelman, C. Tard, O. Sénéque, G. Blondin, J.-M. Latour, J. Penner-Hahn, N. Lehnert, V. L. Pecoraro, Biochemistry 2018, 57, 2308 – 2316.
dc.identifier.citedreferenceA. G. Tebo, L. Hemmingsen, V. L. Pecoraro, Metallomics 2015, 7, 1555 – 1561.
dc.identifier.citedreferenceZ. Xiao, M. J. Lavery, M. Ayhan, S. D. B. Scrofani, M. C. J. Wilce, J. M. Guss, P. A. Tregloan, G. N. George, A. G. Wedd, J. Am. Chem. Soc. 1998, 120, 4135 – 4150.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. Wegner, M. Bever, V. Schünemann, A. X. Trautwein, C. Schmidt, H. Bönisch, M. Gnida, W. Meyer-Klaucke, Hyperfine Interact. 2004, 156, 293 – 298;
dc.identifier.citedreferenceJ. M. Meyer, in Handbook of Metalloproteins (Ed.: A. H. Messerschmidt, R. Poulat, T. Wieghardt ), Wiley, Hoboken, 2006.
dc.identifier.citedreference 
dc.identifier.citedreferenceI. Moura, A. V. Xavier, R. Cammack, M. Bruschi, J. Le Gall, Biochim. Biophys. Acta Protein Struct. 1978, 533, 156 – 162;
dc.identifier.citedreferenceF. E. Jenney, M. W. W. Adams, in Methods Enzymol., Vol. 334, Academic Press, San Diego, 2001, pp.  45 – 55.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. J. Yoo, J. Meyer, C. Achim, J. Peterson, M. P. Hendrich, E. Münck, J. Biol. Inorg. Chem. 2000, 5, 475 – 487;
dc.identifier.citedreferenceB. Börger, D. Suter, J. Chem. Phys. 2001, 115, 9821 – 9826;
dc.identifier.citedreferenceJ. Peisach, W. E. Blumberg, E. T. Lode, M. J. Coon, J. Biol. Chem. 1971, 246, 5877 – 5881.
dc.identifier.citedreferenceE. I. Solomon, Inorg. Chem. 2006, 45, 8012 – 8025.
dc.identifier.citedreferenceA. A. Gewirth, E. I. Solomon, J. Am. Chem. Soc. 1988, 110, 3811 – 3819.
dc.identifier.citedreferenceL. B. LaCroix, S. E. Shadle, Y. Wang, B. A. Averill, B. Hedman, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 1996, 118, 7755 – 7768.
dc.identifier.citedreferenceF. Nastri, D. D′Alonzo, L. Leone, G. Zambrano, V. Pavone, A. Lombardi, Trends Biochem. Sci 2019, 44, 1022 – 1040.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. W. Hellinga, J. Am. Chem. Soc. 1998, 120, 10055 – 10066;
dc.identifier.citedreferenceY. Lu, L. B. LaCroix, M. D. Lowery, E. I. Solomon, C. J. Bender, J. Peisach, J. A. Roe, E. B. Gralla, J. S. Valentine, J. Am. Chem. Soc. 1993, 115, 5907 – 5918;
dc.identifier.citedreferenceR. Schnepf, W. Haehnel, K. Wieghardt, P. Hildebrandt, J. Am. Chem. Soc. 2004, 126, 14389 – 14399;
dc.identifier.citedreferenceD. Shiga, D. Nakane, T. Inomata, Y. Funahashi, H. Masuda, A. Kikuchi, M. Oda, M. Noda, S. Uchiyama, K. Fukui, K. Kanaori, K. Tajima, Y. Takano, H. Nakamura, T. Tanaka, J. Am. Chem. Soc. 2010, 132, 18191 – 18198.
dc.identifier.citedreferenceD. Shiga, Y. Hamano, M. Kamei, Y. Funahashi, H. Masuda, M. Sakaguchi, T. Ogura, T. Tanaka, J. Biol. Inorg. Chem. 2012, 17, 1025 – 1031.
dc.identifier.citedreferenceJ. S. Plegaria, M. Duca, C. Tard, T. J. Friedlander, A. Deb, J. E. Penner-Hahn, V. L. Pecoraro, Inorg. Chem. 2015, 54, 9470 – 9482.
dc.identifier.citedreferenceS. Chakraborty, J. Y. Kravitz, P. W. Thulstrup, L. Hemmingsen, W. F. DeGrado, V. L. Pecoraro, Angew. Chem. Int. Ed. 2011, 50, 2049 – 2053; Angew. Chem. 2011, 123, 2097 – 2101.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. W. Penfield, R. R. Gay, R. S. Himmelwright, N. C. Eickman, V. A. Norris, H. C. Freeman, E. I. Solomon, J. Am. Chem. Soc. 1981, 103, 4382 – 4388;
dc.identifier.citedreferenceG. P. Anderson, D. G. Sanderson, C. H. Lee, S. Durell, L. B. Anderson, E. L. Gross, Biochim. Biophys. Acta 1987, 894, 386 – 398.
dc.identifier.citedreferenceD. M. Arciero, B. S. Pierce, M. P. Hendrich, A. B. Hooper, Biochemistry 2002, 41, 1703 – 1709.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. G. Karlsson, L.-C. Tsai, H. Nar, J. Sanders-Loehr, N. Bonander, V. Langer, L. Sjölin, Biochemistry 1997, 36, 4089 – 4095;
dc.identifier.citedreferenceJ. F. Hall, L. D. Kanbi, R. W. Strange, S. S. Hasnain, Biochemistry 1999, 38, 12675 – 12680.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Pascher, B. G. Karlsson, M. Nordling, B. G. Malmstom, T. Vanngard, Eur. J. Biochem. 1993, 212, 289 – 296;
dc.identifier.citedreferenceA. G. Lappin, C. A. Lewis, W. J. Ingledew, Inorg. Chem. 1985, 24, 1446 – 1450;
dc.identifier.citedreferenceF. Xu, R. M. Berka, J. A. Wahleithner, B. A. Nelson, J. R. Shuster, S. H. Brown, A. E. Palmer, E. I. Solomon, Biochem. J. 1998, 334, 63 – 70.
dc.identifier.citedreference 
dc.identifier.citedreferenceB. T. Farrer, N. P. Harris, K. E. Balchus, V. L. Pecoraro, Biochemistry 2001, 40, 14696 – 14705;
dc.identifier.citedreferenceJ. Y. Su, R. S. Hodges, C. M. Kay, Biochemistry 1994, 33, 15501 – 15510.
dc.identifier.citedreferenceS. Tian, J. Liu, R. E. Cowley, P. Hosseinzadeh, N. M. Marshall, Y. Yu, H. Robinson, M. J. Nilges, N. J. Blackburn, E. I. Solomon, Y. Lu, Nat. Chem. 2016, 8, 670 – 677.
dc.identifier.citedreferenceK. J. Koebke, T. B. J. Pinter, A. Deb, C. Tard, J. Penner-Hahn, V. L. Pecoraro, unpublished results.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.