A Long- Lived Sharp Disruption on the Lower Clouds of Venus
dc.contributor.author | Peralta, J. | |
dc.contributor.author | Navarro, T. | |
dc.contributor.author | Vun, C. W. | |
dc.contributor.author | Sánchez‐lavega, A. | |
dc.contributor.author | McGouldrick, K. | |
dc.contributor.author | Horinouchi, T. | |
dc.contributor.author | Imamura, T. | |
dc.contributor.author | Hueso, R. | |
dc.contributor.author | Boyd, J. P. | |
dc.contributor.author | Schubert, G. | |
dc.contributor.author | Kouyama, T. | |
dc.contributor.author | Satoh, T. | |
dc.contributor.author | Iwagami, N. | |
dc.contributor.author | Young, E. F. | |
dc.contributor.author | Bullock, M. A. | |
dc.contributor.author | Machado, P. | |
dc.contributor.author | Lee, Y. J. | |
dc.contributor.author | Limaye, S. S. | |
dc.contributor.author | Nakamura, M. | |
dc.contributor.author | Tellmann, S. | |
dc.contributor.author | Wesley, A. | |
dc.contributor.author | Miles, P. | |
dc.date.accessioned | 2020-06-03T15:24:14Z | |
dc.date.available | WITHHELD_13_MONTHS | |
dc.date.available | 2020-06-03T15:24:14Z | |
dc.date.issued | 2020-06-16 | |
dc.identifier.citation | Peralta, J.; Navarro, T.; Vun, C. W.; Sánchez‐lavega, A. ; McGouldrick, K.; Horinouchi, T.; Imamura, T.; Hueso, R.; Boyd, J. P.; Schubert, G.; Kouyama, T.; Satoh, T.; Iwagami, N.; Young, E. F.; Bullock, M. A.; Machado, P.; Lee, Y. J.; Limaye, S. S.; Nakamura, M.; Tellmann, S.; Wesley, A.; Miles, P. (2020). "A Long- Lived Sharp Disruption on the Lower Clouds of Venus." Geophysical Research Letters 47(11): n/a-n/a. | |
dc.identifier.issn | 0094-8276 | |
dc.identifier.issn | 1944-8007 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/155542 | |
dc.description.abstract | Planetary- scale waves are thought to play a role in powering the yet unexplained atmospheric superrotation of Venus. Puzzlingly, while Kelvin, Rossby, and stationary waves manifest at the upper clouds (65- 70 km), no planetary- scale waves or stationary patterns have been reported in the intervening level of the lower clouds (48- 55 km), although the latter are probably Lee waves. Using observations by the Akatsuki orbiter and ground- based telescopes, we show that the lower clouds follow a regular cycle punctuated between 30°N and 40°S by a sharp discontinuity or disruption with potential implications to Venus’s general circulation and thermal structure. This disruption exhibits a westward rotation period of - ¼4.9 days faster than winds at this level (- ¼6- day period), alters clouds’ properties and aerosols, and remains coherent during weeks. Past observations reveal its recurrent nature since at least 1983, and numerical simulations show that a nonlinear Kelvin wave reproduces many of its properties.Plain Language SummaryOne of the biggest mysteries of Venus is its atmospheric superrotation that allows the atmosphere to rotate 60 times faster than the solid planet. Atmospheric waves are among one of the possible mechanisms thought to feed this superrotation by pushing energy to different locations of the atmosphere. In fact, the upper clouds of Venus located at 65- 70 km exhibit varied giant waves, like the so- called Y feature or the more recently discovered bow- shaped wave that keeps - stationary- over Aphrodite mountains. In contrast, these planetary- scale waves are missing at the deeper lower clouds (48- 55 km). This is especially puzzling in the case of the stationary waves since the lower clouds are located between the upper clouds and the surface, where they are thought to be generated. Thanks to the high- quality observations of Venus from JAXA’s space mission Akatsuki and NASA’s IRTF telescope, we discovered at the lower clouds an intriguing sharp discontinuity that propagates to the west faster than the winds while altering the clouds’ properties and suffering little distortions during weeks. A reanalysis of past observations revealed that this is a recurrent phenomenon that has gone unnoticed since at least the year 1983. Numerical simulations evidence that an atmospheric wave generated below the clouds and probably pumping energy to the upper clouds can explain many of its properties.Key PointsDiscovery of an equatorial cloud discontinuity at the middle and lower clouds of Venus, where no planetary wave had been found beforeThis disruption propagates to the West faster than the winds, keeps coherent for weeks, and alters clouds’ properties and aerosolsPast observations confirm its existence since 1983; numerical simulations suggest a physical origin as a nonlinear Kelvin wave | |
dc.publisher | SPIE | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.title | A Long- Lived Sharp Disruption on the Lower Clouds of Venus | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/155542/1/grl60595.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/155542/2/grl60595-sup-0001-GRL60595_REV_Suppinfo_S1.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/155542/3/grl60595_am.pdf | |
dc.identifier.doi | 10.1029/2020GL087221 | |
dc.identifier.source | Geophysical Research Letters | |
dc.identifier.citedreference | Peralta, J., Sánchez- Lavega, A., Horinouchi, T., McGouldrick, K., Garate- Lopez, I., Young, E. F., Bullock, M. A., Lee, Y. J., Imamura, T., Satoh, T., & Limaye, S. S. ( 2019 ). New cloud morphologies discovered on the Venus’s night during Akatsuki. Icarus, 333, 177 - 182. https://doi.org/10.1016/j.icarus.2019.05.026 | |
dc.identifier.citedreference | Garate- Lopez, I., & Lebonnois, S. ( 2018 ). Latitudinal variation of clouds’ structure responsible for Venus’ cold collar. Icarus, 314, 1 - 11. https://doi.org/10.1016/j.icarus.2018.05.011 | |
dc.identifier.citedreference | Haghi, K. R., Parsons, D. B., & Shapiro, A. ( 2017 ). Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Monthly Weather Review, 145 ( 10 ), 3929 - 3946. https://doi.org/10.1175/MWR-D-16-0415.1 | |
dc.identifier.citedreference | Hinson, D. P., & Jenkins, J. M. ( 1995 ). Magellan radio occultation measurements of atmospheric waves on Venus. Icarus, 114, 310 - 327. https://doi.org/10.1006/icar.1995.1064 | |
dc.identifier.citedreference | Horinouchi, T., Murakami, S., Satoh, T., Peralta, J., Ogohara, K., Kouyama, T., Imamura, T., Kashimura, H., Limaye, S. S., McGouldrick, K., Nakamura, M., Sato, T. M., Sugiyama, K., Takagi, M., Watanabe, S., Yamada, M., Yamazaki, A., & Young, E. F. ( 2017 ). Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki. Nature Geoscience, 10, 646 - 651. https://doi.org/10.1038/ngeo3016 | |
dc.identifier.citedreference | Imai, M., Kouyama, T., Takahashi, Y., Yamazaki, A., Watanabe, S., Yamada, M., Imamura, T., Satoh, T., Nakamura, M., Murakami, S.- y., Ogohara, K., & Horinouchi, T. ( 2019 ). Planetary- scale variations in winds and UV brightness at the Venusian cloud top: Periodicity and temporal evolution. Journal of Geophysical Research: Planets, 124, 2635 - 2659. https://doi.org/10.1029/2019JE006065 | |
dc.identifier.citedreference | Imamura, T., & Hashimoto, G. L. ( 2001 ). Microphysics of Venusian clouds in rising tropical air. Journal of Atmospheric Sciences, 58 ( 23 ), 3597 - 3612. https://doi.org/10.1175/1520-0469(2001)058<3597:MOVCIR>2.0.CO;2 | |
dc.identifier.citedreference | Imamura, T., Higuchi, T., Maejima, Y., Takagi, M., Sugimoto, N., Ikeda, K., & Ando, H. ( 2014 ). Inverse insolation dependence of Venus’ cloud- level convection. Icarus, 228, 181 - 188. https://doi.org/10.1016/j.icarus.2013.10.012 | |
dc.identifier.citedreference | Iwagami, N., Sakanoi, T., Hashimoto, G. L., Sawai, K., Ohtsuki, S., Takagi, S., Uemizu, K., Ueno, M., Kameda, S., Murakami, S. y., Nakamura, M., Ishii, N., Abe, T., Satoh, T., Imamura, T., Hirose, C., Suzuki, M., Hirata, N., Yamazaki, A., Sato, T. M., Manabu, Y., Yamada, Y., Fukuhara, T., Ogohara, K., Ando, H., Sugiyama, K., Kashimura, H., & Kouyama, T. ( 2018 ). Initial products of Akatsuki 1- μm camera. Earth, Planets, and Space, 70, 6. https://doi.org/10.1186/s40623-017-0773-5 | |
dc.identifier.citedreference | Kouyama, T., Taguchi, M., Fukuhara, T., Imamura, T., Horinouchi, T., Sato, T. M., Murakami, S., Hashimoto, G. L., Lee, Y. J., Futaguchi, M., Yamada, T., Akiba, M., Satoh, T., & Nakamura, M. ( 2019 ). Global structure of thermal tides in the upper cloud layer of Venus revealed by LIR on board Akatsuki. Geophysical Research Letters, 46, 9457 - 9465. https://doi.org/10.1029/2019GL083820 | |
dc.identifier.citedreference | Lebonnois, S., Hourdin, F., Eymet, V., Crespin, A., Fournier, R., & Forget, F. ( 2010 ). Superrotation of Venus’ atmosphere analyzed with a full general circulation model. Journal of Geophysical Research, 115, E06006. https://doi.org/10.1029/2009JE003458 | |
dc.identifier.citedreference | Lebonnois, S., Sugimoto, N., & Gilli, G. ( 2016 ). Wave analysis in the atmosphere of Venus below 100- km altitude, simulated by the LMD Venus GCM. Icarus, 278, 38 - 51. https://doi.org/10.1016/j.icarus.2016.06.004 | |
dc.identifier.citedreference | Lefèvre, M., Lebonnois, S., & Spiga, A. ( 2018 ). Three dimensional turbulence resolving modeling of the Venusian cloud layer and induced gravity waves: Inclusion of complete radiative transfer and wind shear. Journal of Geophysical Research: Planets, 123, 2773 - 2789. https://doi.org/10.1029/2018JE005679 | |
dc.identifier.citedreference | Limaye, S. S., Watanabe, S., Yamazaki, A., Yamada, M., Satoh, T., Sato, T. M., Nakamura, M., Taguchi, M., Fukuhara, T., Imamura, T., Kouyama, T., Lee, Y. J., Horinouchi, T., Peralta, J., Iwagami, N., Hashimoto, G. L., Takagi, S., Ohtsuki, S., Murakami, S., Yamamoto, Y., Ogohara, K., Ando, H., Sugiyama, K., Ishii, N., Abe, T., Hirose, C., Suzuki, M., Hirata, N., Young, E. F., & Ocampo, A. C. Â ( 2018 ). Venus looks different at different wavelengths: Morphology from Akatsuki multispectral images. Earth, Planets, and Space, 70, 38. https://doi.org/10.1186/s40623-018-0789-5 | |
dc.identifier.citedreference | McGouldrick, K., Momary, T. W., Baines, K. H., & Grinspoon, D. H. ( 2012 ). Quantification of middle and lower cloud variability and mesoscale dynamics from Venus Express/VIRTIS observations at 1.74 μ m. Icarus, 217, 615 - 628. https://doi.org/10.1016/j.icarus.2011.07.009 | |
dc.identifier.citedreference | Nakamura, M., Imamura, T., Ishii, N., Abe, T., Kawakatsu, Y., Hirose, C., Satoh, T., Suzuki, M., Ueno, M., Yamazaki, A., Iwagami, N., Watanabe, S., Taguchi, M., Fukuhara, T., Takahashi, Y., Yamada, M., Imai, M., Ohtsuki, S., Uemizu, K., Hashimoto, G. L., Takagi, M., Matsuda, Y., Ogohara, K., Sato, N., Kasaba, Y., Kouyama, T., Hirata, N., Nakamura, R., Yamamoto, Y., Horinouchi, T., Yamamoto, M., Hayashi, Y.- Y., Kashimura, H., Sugiyama, Ko- i., Sakanoi, T., Ando, H., Murakami, S.- y., Sato, T. M., Takagi, S., Nakajima, K., Peralta, J., Lee, Y. J., Nakatsuka, J., Ichikawa, T., Inoue, K., Toda, T., Toyota, H., Tachikawa, S., Narita, S., Hayashiyama, T., Hasegawa, A., & Kamata, Y. ( 2016 ). AKATSUKI returns to Venus. Earth, Planets and Space, 68 ( 1 ), 1 - 10. https://doi.org/10.1186/s40623-016-0457-6 | |
dc.identifier.citedreference | Navarro, T., Schubert, G., & Lebonnois, S. ( 2018 ). Atmospheric mountain wave generation on Venus and its influence on the solid planet’s rotation rate. Nature Geoscience, 11 ( 7 ), 487 - 491. https://doi.org/10.1038/s41561-018-0157-x | |
dc.identifier.citedreference | Ogohara, K., Takagi, M., Murakami, S.- Y., Horinouchi, T., Yamada, M., Kouyama, T., Hashimoto, G. L., Imamura, T., Yamamoto, Y., Kashimura, H., Hirata, N., Sato, N., Yamazaki, A., Satoh, T., Iwagami, N., Taguchi, M., Watanabe, S., Sato, T. M., Ohtsuki, S., Fukuhara, T., Futaguchi, M., Sakanoi, T., Kameda, S., Sugiyama, K.- i., Ando, H., Lee, Y. J., Nakamura, M., Suzuki, M., Hirose, C., Ishii, N., & Abe, T. ( 2017 ). Overview of Akatsuki data products: Definition of data levels, method and accuracy of geometric correction. Earth, Planets, and Space, 69, 167. https://doi.org/10.1186/s40623-017-0749-5 | |
dc.identifier.citedreference | Peralta, J., Hueso, R., Sánchez- Lavega, A., Lee, Y. J., Muñoz, A. G., Kouyama, T., Sagawa, H., Sato, T. M., Piccioni, G., Tellmann, S., Imamura, T., & Satoh, T. ( 2017 ). Stationary waves and slowly moving features in the night upper clouds of Venus. Nature Astronomy, 1, 0187. https://doi.org/10.1038/s41550-017-0187 | |
dc.identifier.citedreference | Peralta, J., Hueso, R., Sánchez- Lavega, A., Piccioni, G., Lanciano, O., & Drossart, P. ( 2008 ). Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX- VIRTIS images. Journal of Geophysical Research, 113, E00B18. https://doi.org/10.1029/2008JE003185 | |
dc.identifier.citedreference | Peralta, J., Iwagami, N., Sánchez- Lavega, A., Lee, Y. J., Hueso, R., Narita, M., Imamura, T., Miles, P., Wesley, A., Kardasis, E., & Takagi, S. ( 2019 ). Morphology and dynamics of Venus’s middle clouds with Akatsuki/IR1. Geophysical Research Letters, 46, 2399 - 2407. https://doi.org/10.1029/2018GL081670 | |
dc.identifier.citedreference | Peralta, J., Muto, K., Hueso, R., Horinouchi, T., Sánchez- Lavega, A., Murakami, S.- Y., Machado, P., Young, E. F., Lee, Y. J., Kouyama, T., Sagawa, H., McGouldrick, K., Satoh, T., Imamura, T., Limaye, S. S., Sato, T. M., Ogohara, K., Nakamura, M., & Luz, D. ( 2018 ). Nightside winds at the lower clouds of Venus with Akatsuki/IR2: Longitudinal, local time and decadal variations from comparison with previous measurements. The Astrophysical Journal Supplement Series, 239 ( 29 ), 17. https://doi.org/10.3847/1538-4365/aae844/meta | |
dc.identifier.citedreference | Peralta, J., Sánchez- Lavega, A., López- Valverde, M. A., Luz, D., & Machado, P. ( 2015 ). Venus’s major cloud feature as an equatorially trapped wave distorted by the wind. Geophysical Research Letters, 42, 705 - 711. https://doi.org/10.1002/2014GL062280. | |
dc.identifier.citedreference | Rayner, J., Bond, T., Bonnet, M., Jaffe, D., Muller, G., & Tokunaga, A. ( 2012 ). iSHELL: A 1- 5 micron cross- dispersed R=70,000 immersion grating spectrograph for IRTF. In I. S. McLean, S. K. Ramsay, & H. Takami (Eds.), Ground- based and airborne instrumentation for astronomy iv (Vol. 8446, pp. 832 - 843 ). Amsterdam, Netherlands: SPIE. https://doi.org/10.1117/12.925511 | |
dc.identifier.citedreference | Rayner, J. T., Toomey, D. W., Onaka, P. M., Denault, A. J., Stahlberger, W. E., Vacca, W. D., Cushing, M. C., & Wang, S. ( 2003 ). SpeX: A medium- resolution 0.8- 5.5 micron spectrograph and imager for the NASA infrared telescope facility. The Publications of the Astronomical Society of the Pacific, 115, 362 - 382. https://doi.org/10.1086/367745 | |
dc.identifier.citedreference | Sánchez- Lavega, A., Lebonnois, S., Imamura, T., Read, P., & Luz, D. ( 2017 ). The atmospheric dynamics of Venus. Space Science Reviews, 212, 1541 - 1616. https://doi.org/10.1007/s11214-017-0389-x | |
dc.identifier.citedreference | Sánchez- Lavega, A., Peralta, J., Gomez- Forrellad, J. M., Hueso, R., Pérez- Hoyos, S., Mendikoa, I., Rojas, J. F., Horinouchi, T., Lee, Y. J., & Watanabe, S. ( 2016 ). Venus cloud morphology and motions from ground- based images at the time of the Akatsuki orbit insertion. The Astrophysical Journal Letters, 833, L7. https://doi.org/10.3847/2041-8205/833/1/L7 | |
dc.identifier.citedreference | Satoh, T., Sato, T. M., Nakamura, M., Kasaba, Y., Ueno, M., Suzuki, M., Hashimoto, G. L., Horinouchi, T., Imamura, T., Yamazaki, A., Enomoto, T., Sakurai, Y., Takami, K., Sawai, K., Nakakushi, T., Abe, T., Ishii, N., Hirose, C., Hirata, N., Yamada, M., Murakami, S.- y., Yamamoto, Y., Fukuhara, T., Ogohara, K., Ando, H., Sugiyama, K.- i., Kashimura, H., & Ohtsuki, S. ( 2017 ). Performance of Akatsuki/IR2 in Venus orbit: The first year. Earth, Planets, and Space, 69, 154. https://doi.org/10.1186/s40623-017-0736-x | |
dc.identifier.citedreference | Scarica, P., Garate- Lopez, I., Lebonnois, S., Piccioni, G., Grassi, D., Migliorini, A., & Tellmann, S. ( 2019 ). Validation of the IPSL Venus GCM thermal structure with Venus Express data. Atmosphere, 10 ( 10 ), 584. https://doi.org/10.3390/atmos10100584 | |
dc.identifier.citedreference | Sihto, S. L., Vuollekoski, H., Leppä, J., Riipinen, I., Kerminen, V. M., Korhonen, H., Lehtinen, K. E. J., Boy, M., & Kulmala, M. ( 2009 ). Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation. Atmospheric Chemistry & Physics, 9 ( 9 ), 2933 - 2947. | |
dc.identifier.citedreference | Sta. Maria Magdalena, R. V., Scot, C. R. R., & Timothy, I. M. ( 2006 ). Numerical simulation of atmospheric bore waves on Mars. Icarus, 185 ( 2 ), 383 - 394. https://doi.org/10.1016/j.icarus.2006.07.006 | |
dc.identifier.citedreference | Tellmann, S., Pätzold, M., Häusler, B., Bird, M. K., & Tyler, G. L. ( 2009 ). Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express. Journal of Geophysical Research, 114, E00B36. https://doi.org/10.1029/2008JE003204 | |
dc.identifier.citedreference | Titov, D. V., Ignatiev, N. I., McGouldrick, K., Wilquet, V., & Wilson, C. F. ( 2018 ). Clouds and hazes of Venus. Space Science Reviews, 214 ( 8 ), 126. https://doi.org/10.1007/s11214-018-0552-z | |
dc.identifier.citedreference | Wilson, C. F., Guerlet, S., Irwin, P. G. J., Tsang, C. C. C., Taylor, F. W., Carlson, R. W., Drossart, P., & Piccioni, G. ( 2008 ). Evidence for anomalous cloud particles at the poles of Venus. Journal of Geophysical Research, 113, E00B13. https://doi.org/10.1029/2008JE003108 | |
dc.identifier.citedreference | Yakovlev, O. I., Matyugov, S. S., & Gubenko, V. N. ( 1991 ). Venera- 15 and - 16 middle atmosphere profiles from radio occultations: Polar and near- polar atmosphere of Venus. Icarus, 94 ( 2 ), 493 - 510. https://doi.org/10.1016/0019-1035(91)90243-M | |
dc.identifier.citedreference | Yamamoto, M., & Tanaka, H. ( 1997 ). Formation and maintenance of the 4- day circulation in the Venus middle atmosphere. Journal of Atmospheric Sciences, 54, 1472 - 1489. https://doi.org/10.1175/1520-0469(1997)054<1472:FAMOTD>2.0.CO;2 | |
dc.identifier.citedreference | Yamazaki, A., Yamada, M., Lee, Y. J., Watanabe, S., Horinouchi, T., Murakami, S., Kouyama, T., Ogohara, K., Imamura, T., Sato, T. M., Yamamoto, Y., Fukuhara, T., Ando, H., Sugiyama, K., Takagi, S., Kashimura, H., Ohtsuki, S., Hirata, N., Hashimoto, G. L., Suzuki, M., Hirose, C., Ueno, M., Satoh, T., Abe, T., Ishii, N., & Nakamura, M. ( 2018 ). Ultraviolet imager on Venus orbiter Akatsuki and its initial results. Earth, Planets and Space, 70 ( 1 ), 23. https://doi.org/10.1186/s40623-017-0772-6 | |
dc.identifier.citedreference | Allen, D. A., & Crawford, J. W. ( 1984 ). Cloud structure on the dark side of Venus. Nature, 307, 222 - 224. | |
dc.identifier.citedreference | Ando, H., Imamura, T., Tellmann, S., Pätzold, M., Häusler, B., Sugimoto, N., Takagi, M., Sagawa, H., Limaye, S., Matsuda, Y., Choudhary, R. K., & Antonita, M. ( 2020 ). Thermal structure of the Venusian atmosphere from the sub- cloud region to the mesosphere as observed by radio occultation. Scientific Reports, 10, 3448. https://doi.org/10.1038/s41598-020-59278-8 | |
dc.identifier.citedreference | Bailey, J. ( 2006 ). Probing the atmosphere of Venus using Infrared spectroscopy. In Proceedings of the 6th australian space science conference, Citeseer, pp. 23. | |
dc.identifier.citedreference | Carlson, R. W., Kamp, L. W., Baines, K. H., Pollack, J. B., Grinspoon, D. H., Encrenaz, Th., Drossart, P., & Taylor, F. W. ( 1993 ). Variations in Venus cloud particle properties: A new view of Venus’s cloud morphology as observed by the Galileo near- infrared mapping spectrometer. Planetary and Space Science, 41 ( 7 ), 477 - 485. https://doi.org/10.1016/0032-0633(93)90030-6 | |
dc.identifier.citedreference | Counselman, C. C., Gourevitch, S. A., King, R. W., Loriot, G. B., & Ginsberg, E. S. ( 1980 ). Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry. Journal of Geophysical Research, 85, 8026 - 8030. | |
dc.identifier.citedreference | Crisp, D., McMuldroch, S., Stephens, S. K., Sinton, W. M., Ragent, B., Hodapp, K.- W., Probst, R. G., Doyle, L. R., Allen, D. A., & Elias, J. ( 1991 ). Ground- based near- infrared imaging observations of Venus during the Galileo encounter. Science, 253, 1538 - 1541. | |
dc.identifier.citedreference | Drossart, P., Piccioni, G., Adriani, A., Angrilli, F., Arnold, G., Baines, K. H., Bellucci, G., Benkhoff, J., Bézard, B., Bibring, J.- P., Blanco, A., Blecka, M. I., Carlson, R. W., Coradini, A., di Lellis, A., Encrenaz, T., Erard, S., Fonti, S., Formisano, V., Fouchet, T., Garcia, R., Haus, R., Helbert, J., Ignatiev, N. I., Irwin, P. G. J., Langevin, Y., Lebonnois, S., López- Valverde, M. A., Luz, D., Marinangeli, L., Orofino, V., Rodin, A. V., Roos- Serote, M. C., Saggin, B., Sánchez- Lavega, A., Stam, D. M., Taylor, F. W., Titov, D., Visconti, G., Zambelli, M., Hueso, R., Tsang, C. C. C., Wilson, C. F., & Afanasenko, T. Z. ( 2007 ). Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planetary and Space Science, 55, 1653 - 1672. https://doi.org/10.1016/j.pss.2007.01.003 | |
dc.identifier.citedreference | Fedorov, A. V., & Melville, W. K. ( 2000 ). Kelvin fronts on the equatorial thermocline. Journal of Physical Oceanography, 30 ( 7 ), 1692. https://doi.org/10.1175/1520-0485(2000)030<1692:KFOTET>2.0.CO;2 | |
dc.identifier.citedreference | Fukuhara, T., Futaguchi, M., Hashimoto, G. L., Horinouchi, T., Imamura, T., Iwagaimi, N., Kouyama, T., Murakami, S.- Y., Nakamura, M., Ogohara, K., Sato, M., Sato, T. M., Suzuki, M., Taguchi, M., Takagi, S., Ueno, M., Watanabe, S., Yamada, M., & Yamazaki, A. ( 2017 ). Large stationary gravity wave in the atmosphere of Venus. Nature Geoscience, 10, 85 - 88. https://doi.org/10.1038/ngeo2873 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.