Show simple item record

Dental and craniofacial defects in the Crtap−/− mouse model of osteogenesis imperfecta type VII

dc.contributor.authorXu, He
dc.contributor.authorLenhart, Sydney A.
dc.contributor.authorChu, Emily Y.
dc.contributor.authorChavez, Michael B.
dc.contributor.authorWimer, Helen F.
dc.contributor.authorDimori, Milena
dc.contributor.authorSomerman, Martha J.
dc.contributor.authorMorello, Roy
dc.contributor.authorFoster, Brian L.
dc.contributor.authorHatch, Nan E.
dc.date.accessioned2020-07-02T20:32:10Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:32:10Z
dc.date.issued2020-07
dc.identifier.citationXu, He; Lenhart, Sydney A.; Chu, Emily Y.; Chavez, Michael B.; Wimer, Helen F.; Dimori, Milena; Somerman, Martha J.; Morello, Roy; Foster, Brian L.; Hatch, Nan E. (2020). "Dental and craniofacial defects in the Crtap−/− mouse model of osteogenesis imperfecta type VII." Developmental Dynamics 249(7): 884-897.
dc.identifier.issn1058-8388
dc.identifier.issn1097-0177
dc.identifier.urihttps://hdl.handle.net/2027.42/155878
dc.description.abstractBackgroundInactivating mutations in the gene for cartilage‐associated protein (CRTAP) cause osteogenesis imperfecta type VII in humans, with a phenotype that can include craniofacial defects. Dental and craniofacial manifestations have not been a focus of case reports to date. We analyzed the craniofacial and dental phenotype of Crtap−/− mice by skull measurements, micro‐computed tomography (micro‐CT), histology, and immunohistochemistry.ResultsCrtap−/− mice exhibited a brachycephalic skull shape with fusion of the nasofrontal suture and facial bones, resulting in mid‐face retrusion and a class III dental malocclusion. Loss of CRTAP also resulted in decreased dentin volume and decreased cellular cementum volume, though acellular cementum thickness was increased. Periodontal dysfunction was revealed by decreased alveolar bone volume and mineral density, increased periodontal ligament (PDL) space, ectopic calcification within the PDL, bone‐tooth ankylosis, altered immunostaining of extracellular matrix proteins in bone and PDL, increased pSMAD5, and more numerous osteoclasts on alveolar bone surfaces.ConclusionsCrtap−/− mice serve as a useful model of the dental and craniofacial abnormalities seen in individuals with osteogenesis imperfecta type VII.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherphenotype
dc.subject.otherskull
dc.subject.otherbone
dc.subject.otherdental
dc.subject.othermicro computed tomography
dc.subject.otherosteogenesis imperfecta
dc.subject.othercraniofacial
dc.titleDental and craniofacial defects in the Crtap−/− mouse model of osteogenesis imperfecta type VII
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155878/1/dvdy166.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155878/2/dvdy166_am.pdf
dc.identifier.doi10.1002/dvdy.166
dc.identifier.sourceDevelopmental Dynamics
dc.identifier.citedreferenceEimar H, Tamimi F, Retrouvey JM, Rauch F, Aubin JE, McKee MD. Craniofacial and dental defects in the Col1a1Jrt/+ mouse model of osteogenesis imperfecta. J Dent Res. 2016; 95: 761 ‐ 768.
dc.identifier.citedreferenceValli M, Barnes AM, Gallanti A, et al. Deficiency of CRTAP in non‐lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix. Clin Genet. 2012; 82: 453 ‐ 459.
dc.identifier.citedreferenceWard LM, Rauch F, Travers R, et al. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone. 2002; 31: 12 ‐ 18.
dc.identifier.citedreferenceRauch F, Fahiminiya S, Majewski J, et al. Cole‐Carpenter syndrome is caused by a heterozygous missense mutation in P4HB. Am J Hum Genet. 2015; 96: 425 ‐ 431.
dc.identifier.citedreferenceBalasubramanian M, Pollitt RC, Chandler KE, et al. CRTAP mutation in a patient with Cole‐Carpenter syndrome. Am J Med Genet A. 2015; 167A: 587 ‐ 591.
dc.identifier.citedreferenceCole DE, Carpenter TO. Bone fragility, craniosynostosis, ocular proptosis, hydrocephalus, and distinctive facial features: a newly recognized type of osteogenesis imperfecta. J Pediatr. 1987; 110: 76 ‐ 80.
dc.identifier.citedreferenceMarini JC, Cabral WA, Barnes AM. Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta. Cell Tissue Res. 2010; 339: 59 ‐ 70.
dc.identifier.citedreferenceGrafe I, Alexander S, Yang T, et al. Sclerostin antibody treatment improves the bone phenotype of Crtap(−/−) mice, a model of recessive Osteogenesis Imperfecta. J Bone Miner Res. 2016; 31: 1030 ‐ 1040.
dc.identifier.citedreferenceGrafe I, Yang T, Alexander S, et al. Excessive transforming growth factor‐beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014; 20: 670 ‐ 675.
dc.identifier.citedreferenceWang L, Foster BL, Kram V, et al. Fibromodulin and biglycan modulate periodontium through TGFbeta/BMP signaling. J Dent Res. 2014; 93: 780 ‐ 787.
dc.identifier.citedreferenceAizenbud D, Peled M, Figueroa AA. A combined orthodontic and surgical approach in osteogenesis imperfecta and severe class III malocclusion: case report. J Oral Maxillofac Surg. 2008; 66: 1045 ‐ 1053.
dc.identifier.citedreferenceRosen A, Modig M, Larson O. Orthognathic bimaxillary surgery in two patients with osteogenesis imperfecta and a review of the literature. Int J Oral Maxillofac Surg. 2011; 40: 866 ‐ 873.
dc.identifier.citedreferenceKantaputra PN, Sirirungruangsarn Y, Intachai W, Ngamphiw C, Tongsima S, Dejkhamron P. Osteogenesis imperfecta with ectopic mineralizations in dentin and cementum and a COL1A2 mutation. J Hum Genet. 2018; 63: 811 ‐ 820.
dc.identifier.citedreferenceBoskey AL, Verdelis K, Spevak L, et al. Mineral and matrix changes in Brtl/+ teeth provide insights into mineralization mechanisms. Biomed Res Int. 2013; 2013: 295812.
dc.identifier.citedreferenceTerajima M, Taga Y, Cabral WA, et al. Cyclophilin B deficiency causes abnormal dentin collagen matrix. J Proteome Res. 2017; 16: 2914 ‐ 2923.
dc.identifier.citedreferenceMuir AM, Ren Y, Butz DH, et al. Induced ablation of Bmp1 and Tll1 produces osteogenesis imperfecta in mice. Hum Mol Genet. 2014; 23: 3085 ‐ 3101.
dc.identifier.citedreferenceManokawinchoke J, Pavasant P, Sawangmake C, et al. Intermittent compressive force promotes osteogenic differentiation in human periodontal ligament cells by regulating the transforming growth factor‐beta pathway. Cell Death Dis. 2019; 10: 761.
dc.identifier.citedreferenceFoster BL, Ao M, Salmon CR, et al. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone. 2018; 107: 196 ‐ 207.
dc.identifier.citedreferenceSchatzle M, Tanner SD, Bosshardt DD. Progressive, generalized, apical idiopathic root resorption and hypercementosis. J Periodontol. 2005; 76: 2002 ‐ 2011.
dc.identifier.citedreferenceThumbigere‐Math V, Alqadi A, Chalmers NI, et al. Hypercementosis associated with ENPP1 mutations and GACI. J Dent Res. 2018; 97: 432 ‐ 441.
dc.identifier.citedreferenceWesselink PR, Beertsen W. Ankylosis of the mouse molar after systemic administration of 1‐hydroxyethylidene‐1,1‐bisphosphonate (HEBP). J Clin Periodontol. 1994a; 21: 465 ‐ 471.
dc.identifier.citedreferenceWesselink PR, Beertsen W. Repair processes in the periodontium following dentoalveolar ankylosis: the effect of masticatory function. J Clin Periodontol. 1994b; 21: 472 ‐ 478.
dc.identifier.citedreferenceWolf M, Ao M, Chavez MB, et al. Reduced orthodontic tooth movement in Enpp1 mutant mice with Hypercementosis. J Dent Res. 2018; 97: 937 ‐ 945.
dc.identifier.citedreferenceZweifler LE, Patel MK, Nociti FH Jr, et al. Counter‐regulatory phosphatases TNAP and NPP1 temporally regulate tooth root cementogenesis. Int J Oral Sci. 2015; 7: 27 ‐ 41.
dc.identifier.citedreferenceLiu J, Nam HK, Campbell C, Gasque KC, Millan JL, Hatch NE. Tissue‐nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alpl(−/−) mouse model of infantile hypophosphatasia. Bone. 2014; 67: 81 ‐ 94.
dc.identifier.citedreferenceLiu J, Nam HK, Wang E, Hatch NE. Further analysis of the Crouzon mouse: effects of the FGFR2(C342Y) mutation are cranial bone‐dependent. Calcif Tissue Int. 2013; 92: 451 ‐ 466.
dc.identifier.citedreferenceMeganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA. Beam hardening artifacts in micro‐computed tomography scanning can be reduced by X‐ray beam filtration and the resulting images can be used to accurately measure BMD. Bone. 2009; 45: 1104 ‐ 1116.
dc.identifier.citedreferenceUmoh JU, Sampaio AV, Welch I, et al. In vivo micro‐CT analysis of bone remodeling in a rat calvarial defect model. Phys Med Biol. 2009; 54: 2147 ‐ 2161.
dc.identifier.citedreferenceBouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro‐computed tomography. J Bone Miner Res. 2010; 25: 1468 ‐ 1486.
dc.identifier.citedreferenceFoster BL, Ao M, Willoughby C, et al. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone. 2015; 78: 150 ‐ 164.
dc.identifier.citedreferenceFoster BL, Soenjaya Y, Nociti FH Jr, et al. Deficiency in acellular cementum and periodontal attachment in bsp null mice. J Dent Res. 2013; 92: 166 ‐ 172.
dc.identifier.citedreferenceLindahl K, Astrom E, Rubin CJ, et al. Genetic epidemiology, prevalence, and genotype‐phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur J Hum Genet. 2015; 23: 1042 ‐ 1050.
dc.identifier.citedreferenceOrioli IM, Castilla EE, Barbosa‐Neto JG. The birth prevalence rates for the skeletal dysplasias. J Med Genet. 1986; 23: 328 ‐ 332.
dc.identifier.citedreferenceStevenson DA, Carey JC, Byrne JL, Srisukhumbowornchai S, Feldkamp ML. Analysis of skeletal dysplasias in the Utah population. Am J Med Genet A. 2012; 158A: 1046 ‐ 1054.
dc.identifier.citedreferenceChang PC, Lin SY, Hsu KH. The craniofacial characteristics of osteogenesis imperfecta patients. Eur J Orthod. 2007; 29: 232 ‐ 237.
dc.identifier.citedreferenceFolkestad L, Hald JD, Canudas‐Romo V, et al. Mortality and causes of death in patients with Osteogenesis Imperfecta: a register‐based Nationwide cohort study. J Bone Miner Res. 2016; 31: 2159 ‐ 2166.
dc.identifier.citedreferenceForlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016; 387: 1657 ‐ 1671.
dc.identifier.citedreferenceFoster BL, Ramnitz MS, Gafni RI, et al. Rare bone diseases and their dental, oral, and craniofacial manifestations. J Dent Res. 2014; 93: 7S ‐ 19S.
dc.identifier.citedreferenceMarini JC, Forlino A, Bachinger HP, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017; 3: 17052.
dc.identifier.citedreferenceO’Connell AC, Marini JC. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999; 87: 189 ‐ 196.
dc.identifier.citedreferenceBarnes AM, Chang W, Morello R, et al. Deficiency of cartilage‐associated protein in recessive lethal osteogenesis imperfecta. N Engl J Med. 2006; 355: 2757 ‐ 2764.
dc.identifier.citedreferenceCabral WA, Chang W, Barnes AM, et al. Prolyl 3‐hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 2007; 39: 359 ‐ 365.
dc.identifier.citedreferenceMorello R, Bertin TK, Chen Y, et al. CRTAP is required for prolyl 3‐ hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006; 127: 291 ‐ 304.
dc.identifier.citedreferencevan Dijk FS, Nesbitt IM, Zwikstra EH, et al. PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet. 2009; 85: 521 ‐ 527.
dc.identifier.citedreferenceChristiansen HE, Schwarze U, Pyott SM, et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010; 86: 389 ‐ 398.
dc.identifier.citedreferenceSaga S, Nagata K, Chen WT, Yamada KM. pH‐dependent function, purification, and intracellular location of a major collagen‐binding glycoprotein. J Cell Biol. 1987; 105: 517 ‐ 527.
dc.identifier.citedreferenceSatoh M, Hirayoshi K, Yokota S, Hosokawa N, Nagata K. Intracellular interaction of collagen‐specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol. 1996; 133: 469 ‐ 483.
dc.identifier.citedreferenceCanty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci. 2005; 118: 1341 ‐ 1353.
dc.identifier.citedreferenceJabbour Z, Al‐Khateeb A, Eimar H, et al. Genotype and malocclusion in patients with osteogenesis imperfecta. Orthod Craniofac Res. 2018; 21: 71 ‐ 77.
dc.identifier.citedreferenceJensen BL, Lund AM. Osteogenesis imperfecta: clinical, cephalometric, and biochemical investigations of OI types I, III, and IV. J Craniofac Genet Dev Biol. 1997; 17: 121 ‐ 132.
dc.identifier.citedreferenceBaldridge D, Lennington J, Weis M, et al. Generalized connective tissue disease in Crtap−/− mouse. PLoS One. 2010; 5: e10560.
dc.identifier.citedreferenceBarbirato C, Trancozo M, Almeida MG, et al. Mutational characterization of the P3H1/CRTAP/CypB complex in recessive osteogenesis imperfecta. Genet Mol Res. 2015; 14: 15848 ‐ 15858.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.