Show simple item record

Sensor‐mediated granular sludge reactor for nitrogen removal and reduced aeration demand using a dilute wastewater

dc.contributor.authorBekele, Zerihun A.
dc.contributor.authorDelgado Vela, Jeseth
dc.contributor.authorBott, Charles B.
dc.contributor.authorLove, Nancy G.
dc.date.accessioned2020-07-02T20:32:13Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:32:13Z
dc.date.issued2020-07
dc.identifier.citationBekele, Zerihun A.; Delgado Vela, Jeseth; Bott, Charles B.; Love, Nancy G. (2020). "Sensor‐mediated granular sludge reactor for nitrogen removal and reduced aeration demand using a dilute wastewater." Water Environment Research 92(7): 1006-1016.
dc.identifier.issn1061-4303
dc.identifier.issn1554-7531
dc.identifier.urihttps://hdl.handle.net/2027.42/155879
dc.description.abstractA sensor‐mediated strategy was applied to a laboratory‐scale granular sludge reactor (GSR) to demonstrate that energy‐efficient inorganic nitrogen removal is possible with a dilute mainstream wastewater. The GSR was fed a dilute wastewater designed to simulate an A‐stage mainstream anaerobic treatment process. DO, pH, and ammonia/nitrate sensors measured water quality as part of a real‐time control strategy that resulted in low‐energy nitrogen removal. At a low COD (0.2 kg m−3 day−1) and ammonia (0.1 kg‐N m−3 day−1) load, the average degree of ammonia oxidation was 86.2 ± 3.2% and total inorganic nitrogen removal was 56.7 ± 2.9% over the entire reactor operation. Aeration was controlled using a DO setpoint, with and without residual ammonia control. Under both strategies, maintaining a low bulk oxygen level (0.5 mg/L) and alternating aerobic/anoxic cycles resulted in a higher level of nitrite accumulation and supported shortcut inorganic nitrogen removal by suppressing nitrite oxidizing bacteria. Furthermore, coupling a DO setpoint aeration strategy with residual ammonia control resulted in more stable nitritation and improved aeration efficiency. The results show that sensor‐mediated controls, especially coupled with a DO setpoint and residual ammonia controls, are beneficial for maintaining stable aerobic granular sludge.Practitioner pointsTight sensor‐mediated aeration control is need for better PN/A.Low DO intermittent aeration with minimum ammonium residual results in a stable N removal.Low DO aeration results in a stable NOB suppression.Using sensor‐mediated aeration control in a granular sludge reactor reduces aeration cost.Multiple metabolic pathways and competition for nitrite exist in the treatment of anaerobically pretreated mainstream wastewater using a granular sludge reactor.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherNOB suppression
dc.subject.otherpartial nitritation/anammox
dc.subject.othermainstream N removal
dc.subject.otheraeration control
dc.titleSensor‐mediated granular sludge reactor for nitrogen removal and reduced aeration demand using a dilute wastewater
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155879/1/wer1296_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155879/2/wer1296.pdf
dc.identifier.doi10.1002/wer.1296
dc.identifier.sourceWater Environment Research
dc.identifier.citedreferenceSmith, A. L., Skerlos, S. J., & Raskin, L. ( 2013 ). Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Research, 47, 1655 – 1665. https://doi.org/10.1016/j.watres.2012.12.028
dc.identifier.citedreferencePhilips, S., Laanbroek, H. J., & Verstraete, W. ( 2002 ). Origin, causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and Biotechnology, 1 ( 2 ), 115 – 141. https://doi.org/10.1023/A:1020892826575
dc.identifier.citedreferencePoot, V., Hoekstra, M., Geleijnse, M. A. A., van Loosdrecht, M. C. M., & Pérez, J. ( 2016 ). Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge. Water Research, 106, 518 – 530. https://doi.org/10.1016/j.watres.2016.10.028
dc.identifier.citedreferenceRaghoebarsing, A. A., Pol, A., van de Pas‐Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., … Strous, M. ( 2006 ). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440 ( 7086 ), 918 – 921. https://doi.org/10.1038/nature04617
dc.identifier.citedreferenceRegmi, P., Bunce, R., Miller, M. W., Park, H., Chandran, K., Wett, B., … Bott, C. B. ( 2015 ). Ammonia‐based intermittent aeration control optimized for efficient nitrogen removal. Biotechnology and Bioengineering, 112 ( 10 ), 2060 – 2067. https://doi.org/10.1002/bit.25611
dc.identifier.citedreferenceRegmi, P., Miller, M. W., Holgate, B., Bunce, R., Park, H., Chandran, K., … Bott, C. B. ( 2014 ). Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Research, 57, 162 – 171. https://doi.org/10.1016/j.watres.2014.03.035
dc.identifier.citedreferenceSarma, S. J., Tay, J. H., & Chu, A. ( 2017 ). Finding knowledge gaps in aerobic granulation technology. Trends in Biotechnology, 35 ( 1 ), 66 – 78. https://doi.org/10.1016/j.tibtech.2016.07.003
dc.identifier.citedreferenceSchloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., … Weber, C. F. ( 2009 ). Introducing mothur: Open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75 ( 23 ), 7537 – 7541. https://doi.org/10.1128/AEM.01541-09
dc.identifier.citedreferenceSinha, B., Ajit, A., & Annachhatre, P. ( 2006 ). Partial nitrification—Operational parameters and microorganisms involved.. Reviews in Environmental Science and Bio/Technology, 6 ( 4 ), 285 – 313. https://doi.org/10.1007/s11157-006-9116-x
dc.identifier.citedreferenceSmith, A. L., Stadler, L. B., Cao, L., Love, N. G., Raskin, L., & Skerlos, S. J. ( 2014 ). Navigating wastewater energy recovery strategies: A life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environmental Science & Technology, 48, 5972 – 5981. https://doi.org/10.1021/es5006169
dc.identifier.citedreferenceSouza, T. S. O., & Foresti, E. ( 2013 ). Sulfide‐oxidizing autotrophic denitrification: An evaluation for nitrogen removal from anaerobically pretreated domestic sewage. Applied Biochemistry and Biotechnology, 170 ( 5 ), 1094 – 1103. https://doi.org/10.1007/s12010-013-0261-8
dc.identifier.citedreferenceStrous, M., Jetten, M. S. M., Heijnen, J. J., & Kuenen, J. G. ( 1998 ). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium‐oxidizing microorganisms. Applied Microbiology and Biotechnology, 50 ( 1998 ), 589 – 596. https://doi.org/10.1007/s002530051340
dc.identifier.citedreferenceSzabó, E., Liébana, R., Hermansson, M., Modin, O., Persson, F., & Wilén, B. M. ( 2017 ). Microbial population dynamics and ecosystem functions of anoxic/aerobic granular sludge in sequencing batch reactors operated at different organic loading rates. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00770
dc.identifier.citedreferenceTao, Y., Gao, D.‐W., Fu, Y., Wu, W.‐M., & Ren, N.‐Q. ( 2012 ). Impact of reactor configuration on anammox process start‐up: MBR versus SBR. Bioresource Technology, 104, 73 – 80. https://doi.org/10.1016/j.biortech.2011.10.052
dc.identifier.citedreferenceTay, J.‐H., Pan, S., He, Y., & Tay, S. T. L. ( 2004 ). Effect of organic loading rate on aerobic granulation. I: Reactor performance. Journal of Environmental Engineering, 130 ( 10 ), 1094 – 1101. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:10(1094)
dc.identifier.citedreferenceWan, J., Gu, J., Zhao, Q., & Liu, Y. ( 2016 ). COD capture: a feasible option towards energy self‐sufficient domestic wastewater treatment.. Scientific Reports, 6 ( 1 ). https://doi.org/10.1038/srep25054
dc.identifier.citedreferenceWett, B., Omari, A., Podmirseg, S. M., Han, M., Akintayo, O., Gómez Brandón, M., … O’Shaughnessy, M. ( 2013 ). Going for mainstream deammonification from bench to full scale for maximized resource efficiency. Water Science and Technology, 68 ( 2 ), 283 – 289. https://doi.org/10.2166/wst.2013.150
dc.identifier.citedreferenceWett, B., Podmirseg, S. M., Gómez‐Brandón, M., Hell, M., Nyhuis, G., Bott, C., & Murthy, S. ( 2015 ). Expanding DEMON sidestream deammonification technology towards mainstream application. Water Environment Research, 87 ( 12 ), 2084 – 2089. https://doi.org/10.2175/106143015X14362865227319
dc.identifier.citedreferenceWinkler, M.‐K.‐H., Kleerebezem, R., & van Loosdrecht, M. C. M. ( 2012 ). Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures. Water Research, 46 ( 1 ), 136 – 144. https://doi.org/10.1016/j.watres.2011.10.034
dc.identifier.citedreferenceZhang, C., Zhang, H., & Yang, F. ( 2015 ). Diameter control and stability maintenance of aerobic granular sludge in an A/O/A SBR. Separation and Purification Technology, 149, 362 – 369. https://doi.org/10.1016/j.seppur.2015.06.010
dc.identifier.citedreferenceZhang, L., Narita, Y., Gao, L., Ali, M., Oshiki, M., & Okabe, S. ( 2017 ). Maximum specific growth rate of anammox bacteria revisited. Water Research, 116, 296 – 303. https://doi.org/10.1016/J.WATRES.2017.03.027
dc.identifier.citedreferenceZhou, Y., Zhang, D. Q., Le, M. T., Puah, A. N., Ng, W. J., Qing, D., Le, T. ( 2013 ). Energy utilization in sewage treatment – A review with comparisons. Journal of Water and Climate Change, 4 ( 1 ), 1 – 10. https://doi.org/10.2166/wcc.2013.117
dc.identifier.citedreferenceBekele, Z. A. ( 2019 ). Granular activated sludge Raw sequence reads. NCBI SRA; Accession: PRJNA549919
dc.identifier.citedreferenceBlackburne, R., Vadivelu, V. M., Yuan, Z., & Keller, J. ( 2007 ). Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Research, 41 ( 14 ), 3033 – 3042. https://doi.org/10.1016/J.WATRES.2007.01.043
dc.identifier.citedreferenceBlackburne, R., Yuan, Z., & Keller, J. ( 2008 ). Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Research, 42 ( 8–9 ), 2166 – 2176. https://doi.org/10.1016/J.WATRES.2007.11.029
dc.identifier.citedreferenceBrockmann, D., & Morgenroth, E. ( 2010 ). Evaluating operating conditions for outcompeting nitrite oxidizers and maintaining partial nitrification in biofilm systems using biofilm modeling and Monte Carlo filtering. Water Research, 44, 1995 – 2009. https://doi.org/10.1016/j.watres.2009.12.010
dc.identifier.citedreferenceCao, Y., van Loosdrecht, M. C. M., & Daigger, G. T. ( 2017 ). Mainstream partial nitritation–anammox in municipal wastewater treatment: Status, bottlenecks, and further studies. Applied Microbiology and Biotechnology, 101 ( 4 ), 1365 – 1383. https://doi.org/10.1007/s00253-016-8058-7
dc.identifier.citedreferenceDaigger, G. T. ( 2014 ). Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox. Water Environment Research, 86 ( 3 ), 204 – 209. https://doi.org/10.2175/106143013X13807328849459
dc.identifier.citedreferencede Graaff, M. S., van den Brand, T. P. H., Roest, K., Zandvoort, M. H., Duin, O., & van Loosdrecht, M. C. M. ( 2016 ). Full‐scale highly‐loaded wastewater treatment processes (A‐stage) to increase energy production from wastewater: performance and design guidelines. Environmental Engineering Science, 33 ( 8 ), 571 – 577. https://doi.org/10.1089/ees.2016.0022
dc.identifier.citedreferencede Kreuk, M. K., Heijnen, J. J., & van Loosdrecht, M. C. M. ( 2005 ). Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnology and Bioengineering, 90 ( 6 ), 761 – 769. https://doi.org/10.1002/bit.20470
dc.identifier.citedreferenceDelgado Vela, J., Dick, G. J., & Love, N. G. ( 2018 ). Sulfide inhibition of nitrite oxidation in activated sludge depends on microbial community composition. Water Research, 138, 241 – 249. https://doi.org/10.1016/j.watres.2018.03.047
dc.identifier.citedreferenceDelgado Vela, J., Stadler, L. B., Martin, K. J., Raskin, L., Bott, C. B., & Love, N. G. ( 2015 ). Prospects for biological nitrogen removal from anaerobic effluents during mainstream wastewater treatment. Environmental Science & Technology Letters, 2 ( 9 ), 234 – 244. https://doi.org/10.1021/acs.estlett.5b00191
dc.identifier.citedreferenceDiamantis, V., Verstraete, W., Eftaxias, A., Bundervoet, B., Vlaeminck, S. E., Melidis, P., & Aivasidis, A. ( 2013 ). Sewage pre‐concentration for maximum recovery and reuse at decentralized level. Water Science and Technology, 67 ( 6 ), 1188 – 1193. https://doi.org/10.2166/wst.2013.639
dc.identifier.citedreferenceGilbert, E. M., Agrawal, S., Brunner, F., Schwartz, T., Horn, H., & Lackner, S. ( 2014 ). Response of different Nitrospira Species to anoxic periods depends on operational DO. Environmental Science and Technology, 48 ( 5 ), 2934 – 2941. https://doi.org/10.1021/es404992g
dc.identifier.citedreferenceJafari Kang, A., & Yuan, Q. ( 2017 ). Long‐term stability and nutrient removal efficiency of aerobic granules at low organic loads. Bioresource Technology, 234, 336 – 342. https://doi.org/10.1016/J.BIORTECH.2017.03.057
dc.identifier.citedreferenceJetten, M. S. M., Horn, S. J., & van Loosdrecht, M. C. M. ( 1997 ). Towards a more sustainable municipal wastewater treatment system. Water Science and Technology, 35 ( 9 ), 171 – 180. https://doi.org/10.2166/wst.1997.0341
dc.identifier.citedreferenceJimenez, J., Miller, M., Bott, C., Murthy, S., De Clippeleir, H., & Wett, B. ( 2015 ). High‐rate activated sludge system for carbon management – Evaluation of crucial process mechanisms and design parameters. Water Research, 87, 476 – 482. https://doi.org/10.1016/J.WATRES.2015.07.032
dc.identifier.citedreferenceKornaros, M., Dokianakis, S. N., & Lyberatos, G. ( 2010 ). Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances. Environmental Science & Technology, 44 ( 19 ), 7245 – 7253. https://doi.org/10.1021/es100564j
dc.identifier.citedreferenceKozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. ( 2013 ). Development of a dual‐index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Applied and Environmental Microbiology, 79 ( 17 ), 5112 – 5120. https://doi.org/10.1128/AEM.01043-13
dc.identifier.citedreferenceLemaire, R., Marcelino, M., & Yuan, Z. ( 2008 ). Achieving the nitrite pathway using aeration phase length control and step‐feed in an SBR removing nutrients from abattoir wastewater. Biotechnology and Bioengineering, 100 ( 6 ), 1228 – 1236. https://doi.org/10.1002/bit.21844
dc.identifier.citedreferenceLiu, Y., Yang, S.‐F., & Tay, J.‐H. ( 2003 ). Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios. Applied Microbiology and Biotechnology, 61 ( 5–6 ), 556 – 561. https://doi.org/10.1007/s00253-003-1246-2
dc.identifier.citedreferenceLochmatter, S., Gonzalez‐Gil, G., & Holliger, C. ( 2013 ). Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge. Water Research, 47 ( 16 ), 6187 – 6197. https://doi.org/10.1016/j.watres.2013.07.030
dc.identifier.citedreferenceLotti, T., Kleerebezem, R., Abelleira‐Pereira, J. M., Abbas, B., & van Loosdrecht, M. C. M. ( 2015 ). Faster through training: The anammox case. Water Research, 81, 261 – 268. https://doi.org/10.1016/j.watres.2015.06.001
dc.identifier.citedreferenceLotti, T., Kleerebezem, R., Hu, Z., Kartal, B., Jetten, M., & Van Loosdrecht, M. C. M. ( 2014 ). Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Research, 66, 111 – 121. https://doi.org/10.1016/j.watres.2014.07.047
dc.identifier.citedreferenceLotti, T., Kleerebezem, R., & Van Loosdrecht, M. C. M. ( 2015 ). Effect of temperature change on anammox activity. Biotechnology and Bioengineering, 112 ( 1 ), 98 – 103. https://doi.org/10.1002/bit.25333
dc.identifier.citedreferenceMa, B., Bao, P., Wei, Y., Zhu, G., Yuan, Z., & Peng, Y. ( 2015 ). Suppressing nitrite‐oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Scientific Reports, 5 ( 1 ). https://doi.org/10.1038/srep13048
dc.identifier.citedreferenceMiller, M. W., DeArmond, J., Elliott, M., Kinyua, M., Kinnear, D., Wett, B., … Bott, C. B. ( 2016 ). Settling and dewatering characteristics of an A‐stage activated sludge process proceeded by shortcut biological nitrogen removal. International Journal of Water and Wastewater Treatment, 2 ( 5 ), 1 – 8. https://doi.org/10.16966/2381-5299.133
dc.identifier.citedreferenceNi, B.‐J., Xie, W.‐M., Liu, S.‐G., Yu, H.‐Q., Wang, Y.‐Z., Wang, G., & Dai, X.‐L. ( 2009 ). Granulation of activated sludge in a pilot‐scale sequencing batch reactor for the treatment of low‐strength municipal wastewater. Water Research, 43 ( 3 ), 751 – 761. https://doi.org/10.1016/j.watres.2008.11.009
dc.identifier.citedreferencePeng, Y., & Zhu, G. ( 2006 ). Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology, 73 ( 1 ), 15 – 26. https://doi.org/10.1007/s00253-006-0534-z
dc.identifier.citedreferencePérez, J., Lotti, T., Kleerebezem, R., Picioreanu, C., & van Loosdrecht, M. C. M. ( 2014 ). Outcompeting nitrite‐oxidizing bacteria in single‐stage nitrogen removal in sewage treatment plants: A model‐based study. Water Research, 66, 208 – 218. https://doi.org/10.1016/J.WATRES.2014.08.028
dc.identifier.citedreferencePeyong, Y. N., Zhou, Y., Abdullah, A. Z., & Vadivelu, V. ( 2012 ). The effect of organic loading rates and nitrogenous compounds on the aerobic granules developed using low strength wastewater. Biochemical Engineering Journal, 67, 52 – 59. https://doi.org/10.1016/J.BEJ.2012.05.009
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.